Spring 2018

Sample Exam 2 – Version 2

No calculators. Show your work. Give full explanations. Good luck!

- 1. (15 points)
 - (a) Carefully state the definition of what it means to say that $\sum_{n=1}^{\infty} a_n$ is convergent.
 - (b) Use this definition to prove that if $\sum_{n=1}^{\infty} a_n$ is convergent and $\sum_{n=1}^{\infty} b_n$ is divergent (not convergent), then $\sum_{n=1}^{\infty} (a_n + b_n)$ is divergent.

(c) Prove that if $0 \le a_n \le c_n$ and $\sum_{n=1}^{\infty} c_n$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is also convergent.

- 2. (15 points)
 - (a) Show that if $\lim_{n \to \infty} \sqrt{n} a_n = 2$, then $\sum_{n=1}^{\infty} a_n$ diverges.
 - (b) Find all x ∈ ℝ for which ∑_{n=1}[∞] xⁿ/n3ⁿ⁺¹ converges.
 (c) Find a sequence {a_n} so that ∑_{n=1}[∞] a_nxⁿ = 4x/(2-x) for all |x| < 2.
- 3. (15 points)
 - (a) Carefully state the ε - δ definition of what it means for a function $f : \mathbb{R} \to \mathbb{R}$ to be *continuous* at a point $x_0 \in \mathbb{R}$. Use this to show that $f(x) = \frac{2x+1}{x^2+1}$ is continuous at $x_0 = 2$.
 - (b) Prove that if a function $f : \mathbb{R} \to \mathbb{R}$ is *continuous* at x_0 , then $\lim_{n \to \infty} f(x_n) = f(x_0)$ for all sequences $\{x_n\}$ with $\lim_{n \to \infty} x_n = x_0$. Use this to show that

$$g(x) = \begin{cases} \cos(x^{-2}) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

is not continuous at $x_0 = 0$.

- 4. (5 points) Give examples of the following, no proofs are required:
 - (a) A function that is continuous at 0 and discontinuous on $\mathbb{R} \setminus \{0\}$.
 - (b) A series with bounded partial sums that is divergent.
 - (c) Bonus Points:

A sequence
$$\{b_n\}$$
 with $0 \le b_n \le \frac{1}{n}$ for each $n \in \mathbb{N}$, but for which $\sum_{n=1}^{\infty} (-1)^{n+1} b_n$ diverges

2. (a) Claim
If limin Jun an = 2, then
$$\sum_{n=1}^{\infty} a_n$$
 diverges.
Proof
Since $\sqrt{n}^n a_n = \frac{a_n}{\sqrt{n}} \rightarrow 2$ and $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges
it fullows from the "limit comparison test" that $\sum_{n=1}^{\infty} a_n$ diverges
(b) Claimin $\sum_{n=1}^{\infty} \frac{x^n}{n \cdot 3^{n+1}}$ converges $\iff x \in [-3, 3)$
Proof Let $a_n = \frac{x^n}{n \cdot 3^{n+1}}$.
Since $\left|\frac{a_{n+1}}{a_n}\right| = \frac{n}{n+1} \frac{1}{3} |x| \rightarrow \frac{1}{3} |x|$ it follows from
the "Raho Toot" that $\sum_{n=1}^{\infty} a_n = conv.$ also. if $|x| < 3$
and diverges if $|x| > 3$.
If $x = 3$ then $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{3n}$ which diverges.
If $x = -3$ then $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{3n}$ which converges
by the Alt. Since Test since $\frac{1}{3n} \ge 0$.
(c) Since $\frac{4x}{2-x} = 2x \frac{1}{1-\frac{x}{2}}$ $g_n = \sum_{n=1}^{\infty} \frac{x^n}{2^n}$ if $|x| < 2$
it follows that $\frac{4x}{2-x} = \sum_{n=1}^{\infty} \frac{1}{2^n} x^n$ if $|x| < 2$

3. (a) (i) See Sample Exam 2 (Version 1) Q3(a)(i).

(ii) Claim:
$$f(x) = \frac{2x+1}{x^2+1}$$
 is continuous at $x_0=2$.
Proof let $\varepsilon > 0$ and set $\delta = \min[\xi_1, \frac{\varepsilon}{3}]$. since $|x+z| < \frac{\varepsilon}{3}$.
If $|x-x_0| < \delta$, then
 $\left|\frac{2x+1}{x^2+1} - 1\right| = \frac{1\times 1}{x^2+1} |x-z_1| \leq |x||x-z| < 3|x-z| < 3(\frac{\varepsilon}{3}) = \varepsilon$
 $f(z)$
Since $|x-z| < 1$
 $|x-z| < 3|x-z| < 3(\frac{\varepsilon}{3}) = \varepsilon$

(b) (i) See Sample Exam 2 (Version 1)
$$O(3(c))$$
 direction (\Rightarrow).
(ii) Claim $g(x) = \int \cos(x^{-2}) if x \neq 0$ is discutning at $x = 0$.
Proof By (i) it suffices to exhibit two sequences $\xi(x_1) \& \xi(y_1)$
with $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = 0$, $\lim_{n \to \infty} \lim_{n \to \infty} g(x_1) \neq \lim_{n \to \infty} g(y_1)$
Take $x_n = \frac{1}{\sqrt{2\pi n}}$ and $y_n = \frac{1}{\sqrt{2\pi n + \frac{n}{2}}}$ for each neW.
Clearly $x_n \to 0$ and $y_n \to 0$, while $g(x_n) = 1 \& g(y_n) = 0 \forall neW$
4. (a) $f(x) = \begin{cases} x & \text{if } x \in O(x_1) \\ x_n = 1 \end{cases}$