Math 3100 Assignment 7

Power Series and Continuity

Due at 12:00 pm on Friday the 9th of March 2018

1. Find a power series representation for the function and determine the interval of convergence.
(a) $f(x)=\frac{1}{1+x}$
(b) $g(x)=\frac{1}{1-4 x^{2}}$
(c) $h(x)=\frac{1}{4+x^{2}}$
(d) $F(x)=\frac{x}{x-3}$
2. Find all $x \in \mathbb{R}$ for which the following power series converge:
(a) $\sum_{n=0}^{\infty} n^{3} x^{n}$
(b) $\sum_{n=1}^{\infty} \frac{2^{n}}{n!} x^{n}$
(c) $\sum_{n=1}^{\infty} \frac{2^{n}}{n^{2}} x^{n}$
(d) $\sum_{n=1}^{\infty} \frac{n^{3}}{3^{n}} x^{n}$
(e) $\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{\sqrt{n}}$
3. Find the radius of convergence and interval of convergence of the power series.
(a) $\sum_{n=0}^{\infty} \frac{x^{n}}{n+3}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n 2^{n}}$
(c) $\sum_{n=0}^{\infty} \frac{3^{n} x^{n}}{(n+1)^{2}}$
(d) $\sum_{n=1}^{\infty}(-1)^{n} \frac{(x+2)^{n}}{\sqrt{n}}$
4. Prove that each of the following functions are continuous at x_{0} using the $\varepsilon-\delta$ definition of continuity.
(a) $f(x)=3 x^{2}, x_{0}=2$
(b) $g(x)=\frac{2 x-3}{x-1}, x_{0}=2$
(c) $h(x)=\frac{x^{2}-x+3}{x+1}, x_{0}=1$
(d) $F(x)=x^{3}, x_{0}$ arbitrary
(e) $G(x)=\frac{1}{x^{2}}, x_{0} \neq 0$ arbitrary
5. Define a modified Dirichlet's function $h: \mathbb{R} \rightarrow \mathbb{R}$, by

$$
h(x):=\left\{\begin{array}{ll}
x & \text { if } x \in \mathbb{Q} \\
0 & \text { if } x \notin \mathbb{Q}
\end{array} .\right.
$$

Prove that h is continuous at $x=0$, but discontinuous at all $x \neq 0$.

