Math 3100 Assignment 5

Infinite Series

Due at 12:00 pm on Monday the 26th of February 2018

1. Suppose that $\sum_{k=1}^{\infty} a_{k}$ converges to A and $\sum_{k=1}^{\infty} b_{k}$ converges to B.
(a) Prove that $\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)$ converges to $A+B$.
(b) Must $\sum_{k=1}^{\infty}\left(a_{k} b_{k}\right)$ converge to $A B$? Give either a proof or counterexample.
2. Evaluate the following series
(a) $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$
(b) $\sum_{n=2}^{\infty} \frac{3}{4^{n}}$
(c) $\sum_{n=3}^{\infty} \frac{7^{n-1}}{2^{n+1}}$
3. Prove that omitting or changing a finite number of terms of a series does not affect its convergence. Hint: Try using the Cauchy Criterion
4. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be two sequences of positive real numbers. Prove the following:
(i) If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c>0$, then $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ either both converge or both diverge.
(ii) If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$ and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ also converges.
(iii) If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$ and $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ also diverges.
5. Test the series for convergence or divergence.
(a) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{2}+3}$
(b) $\sum_{n=0}^{\infty} \cos (n)$
(c) $\sum_{n=1}^{\infty} \frac{2^{n}}{n 3^{n+1}}$
(d) $\sum_{n=1}^{\infty} \frac{n 2^{n}}{3^{n+1}}$
(e) $\sum_{n=3}^{\infty} \frac{(-1)^{n}}{(\log n)^{2}}$
(f) $\sum_{n=1}^{\infty} \frac{2 n}{8 n-5}$
(g) $\sum_{n=3}^{\infty} \frac{2}{n(\log n)^{3}}$
(h) $\sum_{n=1}^{\infty} \frac{3^{n} n^{2}}{n!}$
(i) $\sum_{n=1}^{\infty} \frac{3^{n}}{5^{n}+n}$
(j) $\sum_{n=1}^{\infty} \frac{n+5}{5^{n}}$
6. Investigate the behavior (convergence or divergence) of $\sum_{n=1}^{\infty} a_{n}$ if
(a) $a_{n}=\sqrt{n+1}-\sqrt{n}$
(b) $a_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{n}$
