Math 3100 Assignment 3

Convergence of Sequences

Due at the beginning of class on Friday the 2nd of February 2018

- 1. What happens if we interchange or reverse the order of the quantifiers in the definition of convergence of a sequence?
 - (a) Definition: A sequence {a_n} verconges to a if there exists an ε > 0 such that for all N ∈ N it is true that n > N implies |a_n a| < ε.
 Give an example of a vercongent sequence. Can you give an example a vercongent sequence that is divergent? What exactly is being described in this strange definition?
 - (b) Definition: A sequence {a_n} concordes to a if there exists a number N such that n > N implies |a_n a| < ε for all ε > 0.
 Give an example of a concordent sequence. Can you give an example a concordent sequence that is divergent? What exactly is being described in this strange definition?
- 2. Verify the following using the definition of convergence of a sequence:
 - (a) If $a_n \to a$, then $|a_n| \to |a|$. Is the converse true?
 - (b) Let $a_n \ge 0$ for all $n \in \mathbb{N}$.
 - i. Show that if $a_n \to 0$, then $\sqrt{a_n} \to 0$.
 - ii. Show that if $a_n \to a$, then $\sqrt{a_n} \to \sqrt{a}$.
 - (c) If $\{a_n\}$ is bounded (but not necessarily convergent) and $\lim_{n \to \infty} b_n = 0$, then $\lim_{n \to \infty} a_n b_n = 0$.
- 3. Let $\{a_n\}$ be a convergent sequence with $\lim_{n\to\infty} a_n = a$. Prove the following two statements:
 - (a) If $a_n \leq b$ for all $n \in \mathbb{N}$, then $a \leq b$.
 - (b) If $\{a_n\}$ is increasing, then $a_n \leq a$ for all $n \in \mathbb{N}$.
- 4. We say that $\{a_n\}$ diverges to infinity, and write $\lim_{n \to \infty} a_n = \infty$, if for every M > 0 there exists a number N such that n > N implies that $a_n > M$.
 - (a) Prove, using the definition above, that $\lim_{n \to \infty} n^p = \infty$ for all p > 0.
 - (b) Prove that if $a_n > 0$ for all $n \in \mathbb{N}$, then

$$\lim_{n \to \infty} a_n = \infty \quad \Longleftrightarrow \quad \lim_{n \to \infty} \frac{1}{a_n} = 0$$

5. (a) Let $x_1 = 3$ and $x_{n+1} = \frac{1}{4 - x_n}$ for all $n \in \mathbb{N}$.

- i. Show that $\{x_n\}$ is decreasing and satisfies $2 \sqrt{3} \le x_n \le 3$ for all $n \in \mathbb{N}$.
- ii. Conclude that if the sequence $\{x_n\}$ converges, then it must converge to $2 \sqrt{3}$.
- (b) Let $\{a_n\}$ be the Fibonacci sequence given recursively by $a_1 = 1$, $a_2 = 1$ and $a_{n+2} = a_{n+1} + a_n$ for $n \in \mathbb{N}$. We now construct a new sequence $\{b_n\}$ by setting $b_n = a_{n+1}/a_n$ for all $n \in \mathbb{N}$.
 - i. Show that $\{b_n\}$ satisfies the recursive formula $b_{n+1} = 1 + 1/b_n$ with $b_1 = 1$, and that $1 \le b_n \le 2$ for all $n \in \mathbb{N}$.
 - ii. Conclude that <u>if</u> the sequence $\{b_n\}$ converges, then it must converge to $\frac{1+\sqrt{5}}{2}$.