Math 3100 Assignment 2

Sequences: Boundedness, Monotonicity, and Convergence

Due at the beginning of class on Friday the 26th of January 2018

- 1. Which of the sequences below are increasing, strictly increasing, decreasing, strictly decreasing, or none of the above? Justify your answers. Which are bounded above, or bounded below; which are bounded? Give an upper bound and/or lower bound when applicable.
 - (a) $a_n = n^2 n$
 - $(b) \quad b_n = \frac{1}{n+1}$
 - (c) $c_n = \frac{(-1)^n}{n^3}$
 - (d) $x_{n+1} = x_n + \frac{1}{(n+1)^2}$, for $n \in \mathbb{N}$ and $x_1 = 1$
 - (e) $y_n = 17$ for all $n \in \mathbb{N}$

Challenge: Can you show that the sequence defined by $x_{n+1} = x_n + \frac{1}{n+1}$, for $n \in \mathbb{N}$ and $x_1 = 1$ is strictly increasing and <u>not</u> bounded above.

2. (a) Let $\{a_n\}$ be a sequence given recursively by $a_{n+1} = \frac{3a_n + 2}{a_n + 2}$ with $a_1 = 1$.

Prove that $\{a_n\}$ is increasing and satisfies $a_n \leq 2$ for all $n \in \mathbb{N}$.

Hint: Depending on your approach it may help to also verify that $a_n \geq 0$ for all $n \in \mathbb{N}$.

(b) Let $\{b_n\}$ be a sequence given recursively by $b_{n+1} = \frac{b_n}{2} + \frac{1}{b_n}$ with $b_1 = 2$.

Use induction to prove that $\{b_n\}$ satisfies both $b_n > 0$ and $b_n^2 - 2 \ge 0$ for all $n \in \mathbb{N}$. Use this to establish that $\{b_n\}$ is a decreasing sequence.

- 3. (a) Let $q \neq 0$ be rational and x be irrational. Prove that q + x and qx are both irrational.
 - (b) Give examples of the following:
 - i. A sequence $\{x_n\}$ of irrational numbers whose limit is a rational number.
 - ii. A sequence $\{q_n\}$ of rational numbers whose limit is an irrational number.
- 4. Verify, using the definition of convergence of a sequence, that the following sequences converge to the proposed limit.

 - (a) $\lim_{n \to \infty} \frac{1}{n^{1/3}} = 0$ (b) $\lim_{n \to \infty} \frac{3n+1}{2n+5} = \frac{3}{2}$ (c) $\lim_{n \to \infty} \frac{1}{6n^2+1} = 0$
- 5. Determine the value of the following limits, and then prove your claims using the definition of convergence of a sequence.

1

- (a) $\lim_{n \to \infty} \frac{n}{n^2 + 1}$ (b) $\lim_{n \to \infty} \frac{4n + 3}{7n 5}$ (c) $\lim_{n \to \infty} \frac{\sin n}{n^{1/2}}$