Exam 3 Study Guide and Practice Questions

1. (a) Suppose $f : \mathbb{R} \to \mathbb{R}$ satisfies

$$\lim_{h \to 0} \left(f(x+h) - f(x-h) \right) = 0$$

Does this imply that f is continuous at x?

(b) Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous at x and satisfies

$$\lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h} = 0.$$

Does this imply that f is differentiable at x?

- 2. Let $f : \mathbb{R} \to \mathbb{R}$ and $x_0 \in \mathbb{R}$.
 - (a) Carefully state the ε - δ definition of $\lim_{x \to c} f(x) = L$.
 - (b) Prove that $\lim_{x \to x_0} f(x) = L$ if and only if $\lim_{n \to \infty} f(x_n) = L$ for all sequences $\{x_n\}$ in $\mathbb{R} \setminus \{x_0\}$ with $\lim_{n \to \infty} x_n = x_0$.

3. Let

$$f_a(x) = \begin{cases} x^a & \text{if } x > 0\\ 0 & \text{if } x \le 0 \end{cases}$$

- (a) For which values of a is f_a continuous at 0?
- (b) For which values of a is f_a differentiable at 0? In this case is the derivative function continuous?
- (c) For which values of a is f_a twice-differentiable?
- 4. Let

$$g_a(x) = \begin{cases} x^a \sin(1/x) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Find particular non-negative (and potentially non-integer) values of a for which:

- (a) g_a is differentiable on \mathbb{R} , but g'_a is unbounded on [0, 1].
- (b) g_a is differentiable on \mathbb{R} with g'_a continuous but not differentiable at 0.
- (c) g_a and g'_a are differentiable on \mathbb{R} , but g''_a is not continuous at 0.
- 5. (a) State and prove Rolle's Theorem.
 - (b) State the Generalized Mean Value Theorem. Do you remember it's proof?
 - (c) Let f and g be continuous functions on some interval I containing c and differentiable on the same interval except possibly at c itself. Prove that if $\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0$ and $\lim_{x \to c} \frac{f'(x)}{g'(x)} = L$, then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = L.$$

6. (a) Find the value of $f^{(17)}(0)$ if $f(x) = \frac{4x}{2-x}$.

- (b) Give an example of an infinitely differentiable function that is <u>not</u> equal to its Taylor series.
- (c) i. Prove that if $h: [0, \infty) \to \mathbb{R}$ is twice differentiable on [0, x], then

$$h(x) = h(0) + h'(0)x + \frac{h''(c)}{2}x^2$$

for some $c \in (0, x)$. Hint: Apply the "Generalized MVT" to h(x) - h(0) - h'(0)x and x^2 . ii. How well does 1 + x/2 approximate $\sqrt{1+x}$ on [0, 1/10]?