Exam 3
 Study Guide and Practice Questions

1. (a) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
\lim _{h \rightarrow 0}(f(x+h)-f(x-h))=0
$$

Does this imply that f is continuous at x ?
(b) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at x and satisfies

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x-h)}{2 h}=0
$$

Does this imply that f is differentiable at x ?
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $x_{0} \in \mathbb{R}$.
(a) Carefully state the $\varepsilon-\delta$ definition of $\lim _{x \rightarrow c} f(x)=L$.
(b) Prove that $\lim _{x \rightarrow x_{0}} f(x)=L$ if and only if $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$ for all sequences $\left\{x_{n}\right\}$ in $\mathbb{R} \backslash\left\{x_{0}\right\}$ with $\lim _{n \rightarrow \infty} x_{n}=x_{0}$.
3. Let

$$
f_{a}(x)= \begin{cases}x^{a} & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

(a) For which values of a is f_{a} continuous at 0 ?
(b) For which values of a is f_{a} differentiable at 0 ? In this case is the derivative function continuous?
(c) For which values of a is f_{a} twice-differentiable?
4. Let

$$
g_{a}(x)= \begin{cases}x^{a} \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Find particular non-negative (and potentially non-integer) values of a for which:
(a) g_{a} is differentiable on \mathbb{R}, but g_{a}^{\prime} is unbounded on $[0,1]$.
(b) g_{a} is differentiable on \mathbb{R} with g_{a}^{\prime} continuous but not differentiable at 0 .
(c) g_{a} and g_{a}^{\prime} are differentiable on \mathbb{R}, but $g_{a}^{\prime \prime}$ is not continuous at 0 .
5. (a) State and prove Rolle's Theorem.
(b) State the Generalized Mean Value Theorem. Do you remember it's proof?
(c) Let f and g be continuous functions on some interval I containing c and differentiable on the same interval except possibly at c itself. Prove that if $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)=0$ and $\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$, then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=L
$$

6. (a) Find the value of $f^{(17)}(0)$ if $f(x)=\frac{4 x}{2-x}$.
(b) Give an example of an infinitely differentiable function that is not equal to its Taylor series.
(c) i. Prove that if $h:[0, \infty) \rightarrow \mathbb{R}$ is twice differentiable on $[0, x]$, then

$$
h(x)=h(0)+h^{\prime}(0) x+\frac{h^{\prime \prime}(c)}{2} x^{2}
$$

for some $c \in(0, x)$. Hint: Apply the "Generalized MVT" to $h(x)-h(0)-h^{\prime}(0) x$ and x^{2}.
ii. How well does $1+x / 2$ approximate $\sqrt{1+x}$ on $[0,1 / 10]$?

