Exam 2

No calculators. Show your work. Give full explanations. Good luck!

1. (20 points)

(a) Carefully state what it means to say that $\sum_{n=1}^{\infty}$ $n=1$ a_n converges to 2 and prove that if this indeed the case, then $\sum_{n=0}^{\infty} (10a_n)$ converges to 20.

(b) Prove that if $b_n > 0$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty}$ $n=1$ b_n converges, then $\sum_{n=1}^{\infty}$ $n=1$ b_n^2 also converges.

(c) Determine if the following series are absolutely convergent, conditionally convergent, or divergent. Justify your answers.

(i)
$$
\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2 + 1}
$$
 (ii)
$$
\sum_{n=1}^{\infty} \frac{\log n}{n^{3/2}}
$$

(d) Use the "Cauchy Condensation Test" to determine the convergence or divergence of

(e) Find all
$$
x \in \mathbb{R}
$$
 for which
$$
\sum_{n=1}^{\infty} \frac{(-2)^n x^{2n}}{n}
$$
 converges.

- 2. (15 points) Let $f : \mathbb{R} \to \mathbb{R}$.
	- (a) Carefully state the ε -δ definition of what it means for f to be *continuous* at x_0 and conclude that if f is continuous at x_0 with $f(x_0) = 2$, then there exists $\delta > 0$ such that $f(x) \ge 1$ whenever $|x-x_0| < \delta$.
	- (b) Use the definition from part (a) to prove that $f(x) = \frac{1}{x}$ is continuous at $x_0 = 1$.
	- (c) Prove that f is continuous at x_0 if and only if $\lim_{n\to\infty} f(x_n) = f(x_0)$ for all sequences with $\lim_{n\to\infty} x_n = x_0$.
- 3. (15 points)
	- (a) Carefully state what it mean to say that a function $f : \mathbb{R} \to \mathbb{R}$ is differentiable at x_0 and prove that if f is differentiable at x_0 , then f is continuous at x_0 .

(b) Let
$$
h(x) = \begin{cases} x^2, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}
$$
.

- i. Prove that h is discontinuous at all $x \neq 0$.
- ii. Prove that h is differentiable at $x = 0$.
- iii. What can you say about the continuity of h at $x = 0$ and the differentiability of h at $x \neq 0$?
- (c) Let $f : [a, b] \rightarrow \mathbb{R}$. Prove that if f has a minimum at a point $c \in (a, b)$, and if $f'(c)$ exists, then $f'(c) = 0$.
- 4. (Bonus points) Let $f : [a, b] \to \mathbb{R}$ be differentiable on (a, b) .

Prove that if $f'(a) < 0 < f'(b)$, then there exists $c \in (a, b)$ such that $f'(c) = 0$.