Sample Exam 3 – Version 1

No calculators. Show your work. Give full explanations. Good luck!

- 1. (4 points) Explain why there exist no examples of the following:
 - (a) A continuous function on [0, 1] with range equal to (0, 1).
 - (b) A continuous function on [0,1] with range equal to $[0,1] \cap \mathbb{Q}$

2. (8 points) Prove that $\sum_{n=0}^{\infty} a_n x^n$ and $\sum_{n=1}^{\infty} n a_n x^{n-1}$ have the same radius of convergence.

3. (8 points) Evaluate the following infinite series

(a)
$$\sum_{n=1}^{\infty} \frac{n}{4^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n4^n}$

4. (15 points)

(a) i. Find the sixth order Maclaurin polynomial for the function

$$f(x) = \frac{x^2}{2+x^2}$$

- ii. Without differentiating find the value of $f^{(6)}(0)$.
- (b) Let P₃(x) denote the third order Taylor polynomial centered at x₀ = 1 of f(x) = log x.
 i. Find P₃(x).
 - ii. Give an estimate for how well $P_3(1.5)$ approximates $\log(1.5)$.
- (c) i. Carefully state the Lagrangian Remainder Estimate for Maclaurin series.
 ii. Find a polynomial that approximates e^x to within 10⁻³ for all |x| ≤ 1/2.
- 5. (15 points)
 - (a) Carefully state what it mean to say that a function $f : \mathbb{R} \to \mathbb{R}$ is differentiable at x_0 and prove that if f is differentiable at x_0 , then f is continuous at x_0 .

(b) Let
$$h(x) = \begin{cases} x^2, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$$
.

- i. Prove that h is discontinuous at all $x \neq 0$.
- ii. Prove that h is differentiable at x = 0.
- iii. What can you say about the continuity of h at x = 0 and the differentiability of h at $x \neq 0$?
- (c) Let $f : [a, b] \to \mathbb{R}$.

Prove that if f has a minimum at a point $c \in (a, b)$, and if f'(c) exists, then f'(c) = 0.

6. (Bonus points) Let $f : [a, b] \to \mathbb{R}$ be differentiable on [a, b].

Prove that if f'(a) < 0 < f'(b), then there exists $c \in (a, b)$ such that f'(c) = 0.