Sample Exam 2 - Version 2

No calculators. Show your work. Give full explanations. Good luck!

1. (15 points)
(a) Carefully state the definition of what it means to say that $\sum_{n=1}^{\infty} a_{n}$ is convergent.
(b) Use this definition to prove that if $\sum_{n=1}^{\infty} a_{n}$ is convergent and $\sum_{n=1}^{\infty} b_{n}$ is divergent (not convergent), then $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ is divergent.
(c) Prove that if $0 \leq a_{n} \leq c_{n}$ and $\sum_{n=1}^{\infty} c_{n}$ is convergent, then $\sum_{n=1}^{\infty} a_{n}$ is also convergent.
2. (15 points)
(a) Show that if $\lim _{n \rightarrow \infty} \sqrt{n} a_{n}=2$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
(b) Find all $x \in \mathbb{R}$ for which $\sum_{n=1}^{\infty} \frac{x^{n}}{n 3^{n+1}}$ converges.
(c) Find a sequence $\left\{a_{n}\right\}$ so that $\sum_{n=1}^{\infty} a_{n} x^{n}=\frac{4 x}{2-x}$ for all $|x|<2$.
3. (15 points)
(a) Carefully state the $\varepsilon-\delta$ definition of what it means for a function $f: \mathbb{R} \rightarrow \mathbb{R}$ to be continuous at a point $x_{0} \in \mathbb{R}$. Use this to show that $f(x)=\frac{2 x+1}{x^{2}+1}$ is continuous at $x_{0}=2$.
(b) Prove that if a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at x_{0}, then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right)$ for all sequences $\left\{x_{n}\right\}$ with $\lim _{n \rightarrow \infty} x_{n}=x_{0}$. Use this to show that

$$
g(x)= \begin{cases}\cos \left(x^{-2}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

is not continuous at $x_{0}=0$.
4. (5 points) Give examples of the following, no proofs are required:
(a) A function that is continuous at 0 and discontinuous on $\mathbb{R} \backslash\{0\}$.
(b) A series with bounded partial sums that is divergent.
(c) Bonus Points:

A sequence $\left\{b_{n}\right\}$ with $0 \leq b_{n} \leq \frac{1}{n}$ for each $n \in \mathbb{N}$, but for which $\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}$ diverges.

