Sample Exam 2 - Version 1

No calculators. Show your work. Give full explanations. Good luck!

1. (15 points)
(a) Carefully state what it means to say that $\sum_{n=1}^{\infty} a_{n}$ converges to A and prove that if this indeed the case, then $\sum_{n=1}^{\infty}\left(10 a_{n}\right)$ converges to $10 A$.
(b) Prove that if $b_{n}>0$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} b_{n}^{2}$ also converges.
(c) Prove that if a series converges absolutely, then it is convergent.
2. (15 points)
(a) Determine if the following series are absolutely convergent, conditionally convergent, or divergent. Justify your answers.
(i) $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n} n}{n^{2}+1}$
(ii) $\quad \sum_{n=1}^{\infty} \frac{\log n}{n^{3 / 2}}$
(b) Use the "Cauchy Condensation Test" to determine the convergence or divergence of

$$
\sum_{n=2}^{\infty} \frac{1}{n \log n}
$$

(c) Find all $x \in \mathbb{R}$ for which $\sum_{n=1}^{\infty} \frac{(-2)^{n} x^{2 n}}{n}$ converges.
3. (20 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$.
(a) Carefully state the $\varepsilon-\delta$ definition of what it means for f to be continuous at x_{0} and conclude that if f is continuous at x_{0} with $f\left(x_{0}\right)=2$, then there exists $\delta>0$ such that $f(x) \geq 1$ whenever $\left|x-x_{0}\right|<\delta$.
(b) Use the definition from part (a) to prove that $f(x)=\frac{1}{x}$ is continuous at $x_{0}=1$.
(c) Prove that f is continuous at x_{0} if and only if $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right)$ for all sequences with $\lim _{n \rightarrow \infty} x_{n}=x_{0}$.

