Math 3100

Sample Exam 1 - Version 3

No calculators. Show your work. Give full explanations. Good luck!

1. (15 points) following limits or explain why it is divergent.
(a) $\lim _{n \rightarrow \infty}\left(\frac{2 n+1}{3-n}\right)^{3}$
(b) $\lim _{n \rightarrow \infty}\left((-1)^{n}+\frac{1}{n}\right)$
(c) $\lim _{n \rightarrow \infty} \frac{\cos (n)}{n^{2}}$
(d) $\lim _{n \rightarrow \infty} \frac{n!+n}{2^{n}+3 n!}$
(e) $\lim _{n \rightarrow \infty} \frac{n+\log (n)}{n+1}$
2. (20 points)
(a) Carefully state the definition of the convergence of a sequence $\left\{a_{n}\right\}$ to a real number L.
(b) Using the definition of convergence, prove that

$$
\lim _{n \rightarrow \infty} \frac{5 n+4}{2 n-7}=5 / 2
$$

3. (15 points)
(a) Carefully state the definition of a sequence $\left\{a_{n}\right\}$ being bounded above.
(b) Use this definition to prove that the sequence $a_{n}=\sqrt{n}$ is not bounded above.
4. (20 points) Assume that $\lim _{n \rightarrow \infty} b_{n}=L>0$. Using only the definition of convergence prove the following two statements;
(a) There exists $M>0$ such that $\left|b_{n}\right| \leq M$ for all $n \in \mathbb{N}$.
(b) There exists some $N \in \mathbb{N}$ such that if $n>N$, then $b_{n}>L / 2$.
5. (15 points) Prove that if $\left\{a_{n}\right\}$ is an increasing sequence with $\lim _{n \rightarrow \infty} a_{n}=L$, then $a_{n} \leq L$ for all $n \in \mathbb{N}$.
6. (Bonus points) Let $\left\{a_{n}\right\}$ be the Fibonacci sequence given recursively by $a_{1}=1 a_{2}=1$ and $a_{n+1}=a_{n}+a_{n-1}$ for $n>1$. We now construct a new sequence $\left\{b_{n}\right\}$ by setting $b_{n}=a_{n+1} / a_{n}$ for all $n \in \mathbb{N}$.
(a) Show that $\left\{b_{n}\right\}$ satisfies the recursive formula $b_{n+1}=1+1 / b_{n}$ with $b_{1}=1$, and that $1 \leq b_{n} \leq 2$ for all $n \in \mathbb{N}$.
(b) It follows from the formula in (a) that $b_{n+2}=1+\frac{b_{n}}{1+b_{n}}$ for all $n \in \mathbb{N}$, using this and induction prove that
i. the subsequence $\left\{b_{2 n}\right\}$ is decreasing
ii. the subsequence $\left\{b_{2 n-1}\right\}$ is increasing
(c) Conclude that $\left\{b_{n}\right\}$ converges and $\lim _{n \rightarrow \infty} b_{n}=\frac{1+\sqrt{5}}{2}$
