Math 3100

Sample Exam 1 - Version 1

No calculators. Show your work. Give full explanations. Good luck!

1. (25 points)
(a) Let $\left\{x_{n}\right\}$ be a sequence of real numbers. Carefully state the definition of the following:
i. $\lim _{n \rightarrow \infty} x_{n}=x$
ii. $\lim _{n \rightarrow \infty} x_{n}=\infty$.
(b) Use the definition given in (i) to prove that $\lim _{n \rightarrow \infty} \frac{2 n+1}{n-3}=2$.
(c) Use the definitions given above to prove that if $\lim _{n \rightarrow \infty} x_{n}=2$, then
i. $\left\{x_{n}\right\}$ is bounded
ii. $\lim _{n \rightarrow \infty} \frac{1}{x_{n}}=\frac{1}{2}$
iii. $\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=\infty$ whenever $\lim _{n \rightarrow \infty} y_{n}=\infty$
2. (12 points)
(a) Carefully state the Monotone Convergence Theorem.
(b) Let $x_{1}=1$ and $x_{n+1}=\left(\frac{n}{n+1}\right) x_{n}^{2}$ for all $n \in \mathbb{N}$.
i. Find x_{2}, x_{3}, and x_{4}.
ii. Show that $\left\{x_{n}\right\}$ converges and find the value of its limit.
3. (13 points) Let $\left\{x_{n}\right\}$ be a bounded sequence of real numbers.
(a) Carefully state the definition of $\limsup _{n \rightarrow \infty} x_{n}$ and justify why it always exists for such sequences.
(b) Prove that if $\alpha=\limsup _{n \rightarrow \infty} x_{n}$ and $\beta>\alpha$, then there exists an N such that $x_{n}<\beta$ whenever $n>N$.
(c) Let $S=\left\{x\right.$: there exists a subsequence of $\left\{x_{n}\right\}$ that converges to $\left.x\right\}$.
i. Why do we know that S is non-empty?
ii. Prove that if $x \in S$, then $x \leq \limsup _{n \rightarrow \infty} x_{n}$.
