Practice Final Exam

The questions on this exam would have equal weighting

1. (a) Give the definition of $\lim _{n \rightarrow \infty} x_{n}=x$ and use this definition to prove that

$$
\lim _{n \rightarrow \infty} \frac{n^{2}-1}{2 n^{2}+n+1}=\frac{1}{2}
$$

(b) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences of real numbers with

$$
\lim _{n \rightarrow \infty} x_{n}=0 \text { and } \lim _{n \rightarrow \infty} y_{n}=y .
$$

Using only the definition of convergence prove that $\lim _{n \rightarrow \infty} x_{n} y_{n}=0$
(c) Prove that if $x_{n}<10$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} x_{n}=x$, then $x \leq 10$.
2. (a) Carefully state the definition of the supremum (the least upper bound) of a set of real numbers and the Axiom of Completeness (the least upper bound axiom).
(b) Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function with $f(0)=0$ and $f(1)=12$ and let

$$
A:=\{x \in[0,1]: f(x)<10\} .
$$

i. Prove that $\alpha:=\sup (A)$ exists.
ii. Show that there exists a sequence $\left\{\alpha_{n}\right\}$ in A with the property that $\lim _{n \rightarrow \infty} \alpha_{n}=\alpha$.
iii. Conclude that $f(\alpha) \leq 10$.
3. (a) Carefully state the Monotone Convergence Theorem.
(b) Let $\left\{x_{n}\right\}$ be defined recursively by $x_{1}=1$ and $x_{n+1}=\frac{3 x_{n}+2}{x_{n}+2}$ for each $n \in \mathbb{N}$. Prove that $\left\{x_{n}\right\}$ converges and find its limit.
4. (a) Carefully state the definition of a sequence of real numbers $\left\{a_{n}\right\}$ being a Cauchy sequence.
(b) Prove, using the definition given in (a), that Cauchy sequences are always bounded.
(c) Carefully state the Bolzano-Weierstrass Theorem and use this to show that Cauchy sequences of real numbers are always convergent.
5. (a) Show that if $\lim _{n \rightarrow \infty} \sqrt{n} a_{n}=2$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
(b) Determine if the following series are absolutely convergent, conditionally convergent, or divergent. Justify your answers.
(i) $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n} n}{n^{2}+1}$
(ii) $\quad \sum_{n=1}^{\infty} \frac{\log n}{n^{3 / 2}}$
(c) Find all $x \in \mathbb{R}$ for which the following two series converge and a closed form for their sum on this domain:

$$
\text { i. } \quad \sum_{n=0}^{\infty} \frac{x^{n}}{3^{n+1}} \quad \text { ii. } \quad \sum_{n=1}^{\infty} \frac{n x^{n}}{3^{n+1}}
$$

(d) i. Find the value of $f^{(2018)}(0)$ if $f(x)=\log (1+x)$.
ii. Find a polynomial that approximates e^{x} to within 10^{-3} for all $|x| \leq 1 / 2$.
6. (a) Let $X \subseteq \mathbb{R}, x_{0} \in X$, and $f: X \rightarrow \mathbb{R}$.

Carefully state the $\varepsilon-\delta$ definition of what it means for f to be continuous at x_{0}.
(b) Use the definition from part (a) to prove that

$$
f(x)=\frac{x^{2}+5 x-2}{x+1}
$$

is continuous at 2.
(c) Prove that if $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right)$ for all sequences with $\lim _{n \rightarrow \infty} x_{n}=x_{0}$, then f is continuous at x_{0}.
7. (a) Carefully state what it mean to say that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at x_{0} and prove that if f is differentiable at x_{0}, then f is continuous at x_{0}.
(b) Let $h(x)=\left\{\begin{array}{ll}x^{2}, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q}\end{array}\right.$.
i. Prove that h is discontinuous at all $x \neq 0$.
ii. Prove that h is differentiable at $x=0$.
iii. What can you say about the continuity of h at $x=0$ and the differentiability of h at $x \neq 0$?
(c) Let $f:[a, b] \rightarrow \mathbb{R}$.

Prove that if f has a minimum at a point $c \in(a, b)$, and $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.
8. (a) Carefully state the definition of uniform convergence of a sequence of functions $\left\{f_{n}\right\}$ to a function f on a set A.
(b) Prove that if $\left\{f_{n}\right\}$ is a sequence of continuous functions defined on an interval $[a, b]$ which converge uniformly to a limit function f on $[a, b]$, then f must also be a continuous on $[a, b]$.
(c) Conclude from part (a) that if the power series $\sum a_{n} x^{n}$ converges for all $|x|<R$, then for any $0<c<R$ it converges uniformly on the interval $[-c, c]$. Conclude from this that $\sum a_{n} x^{n}$ in fact defines a continuous function on $(-R, R)$.
9. (a) State and prove the Weierstrass M-test.
(b) i. Show that $\sum_{n=1}^{\infty} \frac{x}{1+x^{n}}$ diverges for all $x \in(0,1]$, but convereges if $x>1$.
ii. Let $f(x)=\sum_{n=1}^{\infty} \frac{x}{1+x^{n}}$ on $(1, \infty)$.
A. Does f define a continuous function on $(1, \infty)$?
B. Does the series defining f converge uniformly on $(1, \infty)$?

