
Math 3100 Fall 2018

Infinite Series

1. Important infinite series

Geometric series:
∑∞

n=0 r
n converges ⇐⇒ |r| < 1. If |r| < 1, then

∑∞
n=0 r

n =
1

1− r
.

The p-series:
∑∞

n=1

1

np
converges ⇐⇒ p > 1.

2. Definition and Properties of Convergent Series

Definition. Given a sequence {an} we let sn =
∑n

k=1 ak = a1 + · · ·+ an denote its nth partial sum.

If {sn} converges we define
∞∑

n=1

an := lim
n→∞

sn

and say that the infinite series
∑∞

n=1 an is convergent (or that the original sequence {an} is summable).

If {sn} diverges we say that the infinite series
∑∞

n=1 an diverges.

Theorem 1 (Manipulation of Convergent Series). If {an} and {bn} are two summable sequences and c ∈ R,
then the sequences {an + bn} and {c an} are also summable with

∞∑
n=1

(an + bn) =

∞∑
n=1

an +

∞∑
n=1

bn and

∞∑
n=1

c an = c

∞∑
n=1

an.

Theorem 2. If {an} is a summable sequence, that is if
∑∞

n=1 an converges, then limn→∞ an = 0.

Remark 1: This gives us the following “Test for Divergence”: If an 9 0, then
∑∞

n=1 an diverges.

Remark 2: Warning! The converse of Theorem 2 is FALSE, in other words lim
n→∞

an = 0 does not in and

of itself guarantee
∑∞

n=1 an converges. Consider for example the so-called “harmonic series”
∑∞

n=1
1
n .

Theorem 2 can either be verified directly from the definition (and limit laws) or deduced from the following

Theorem 3 (Cauchy Criterion).

∞∑
n=1

an converges ⇐⇒ for every ε > 0, there exists N such that

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ < ε if n > m > N .

3. Convergence Tests for Series of non-negative terms

Theorem 4 (Monotone Convergence Theorem on Series). If an ≥ 0 and sn = a1 + · · ·+ an, then
∞∑

n=1

an converges ⇐⇒ {sn} bounded.

Theorem 5 (Cauchy Condensation Test). If {an} is a decreasing sequence of non-negative terms, then
∞∑

n=1

an converges ⇐⇒
∞∑
k=0

2ka2k = a1 + 2a2 + 4a4 + 8a8 + · · · converges.

This test is only really used to establish p-series and its close relatives.

Theorem 6 (Direct Comparison Test). Suppose 0 ≤ an ≤ bn for all sufficiently large n ∈ N.

(i) If
∑∞

n=1 bn converges, then
∑∞

n=1 an converges.

(ii) If
∑∞

n=1 an diverges, then
∑∞

n=1 bn diverges.

[If 0 ≤ an ≤ bn holds for all n ∈ N and
∑∞

n=1 bn converges, then one can conclude that
∑∞

n=1 an ≤
∑∞

n=1 bn.]
1
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Corollary 7 (Limit Comparison Test). If an ≥ 0 and 0 < lim
n→∞

an
bn

<∞, then

∞∑
n=1

an converges ⇐⇒
∞∑

n=1

bn converges.

4. Series of both negative and non-negative terms

Theorem 8 (Absolute Convergence implies Convergence).

If

∞∑
n=1

|an| converges, then

∞∑
n=1

an converges.

This can be deduced as a consequence of either Theorem 3 or Theorem 4. The statement can, in fact, be
shown to be equivalent to (and hence is yet another formulation of) the Axiom of Completeness.

Theorem 9 (Alternating Series Test). If {bn} is decreasing with limit 0, then
∑∞

n=1(−1)n+1bn converges
and the error obtained by “cutting off” the infinite series after N terms, namely∣∣∣∣∣

N∑
n=1

(−1)n+1bn −
∞∑

n=1

(−1)n+1bn

∣∣∣∣∣ ≤ bN+1.

Theorem 10 (Ratio Test – A Computational Tool). Let {an} be a sequence of non-zero terms.

• If lim sup
n→∞

∣∣∣an+1

an

∣∣∣ < 1, so in particular if lim
n→∞

∣∣∣an+1

an

∣∣∣ < 1, then
∑∞

n=1 |an| converges.

• If
∣∣∣an+1

an

∣∣∣ ≥ 1 infinitely often, so in particular if lim
n→∞

∣∣∣an+1

an

∣∣∣ > 1, then
∑∞

n=1 an diverges.

Recall, by considering
∑

1
n and

∑
1
n2 , that the Ratio Test is inconclusive if lim

n→∞

∣∣∣an+1

an

∣∣∣ = 1.

Theorem 11 (Root Test – Mainly a Theoretical Tool). Let α = lim sup
n→∞

n
√
|an|.

• If α < 1, then
∑∞

n=1 |an| converges.

• If α > 1, then
∑∞

n=1 an diverges.

Recall, again by considering for example
∑

1
n and

∑
1
n2 , that the Root Test is inconclusive if α = 1.

Corollary 12 (Convergence of Power Series). The domain of convergence for a power series
∑∞

n=1 cnx
n is

either {0}, all of R, or precisely one of (−R,R), (−R,R], [−R,R), or [−R,R] for some R > 0.

This follows directly from the Theorem 11 together with the fact that lim sup
n→∞

n
√
|cnxn| = |x| lim sup

n→∞
n
√
|cn|.

5. Strategy for analyzing
∑∞

n=1 an

1. Does an → 0?

If NO, then
∑∞

n=1 an diverges.

2. Does
∑∞

n=1 |an| converge?

If YES, then
∑∞

n=1 an converges absolutely, and hence converges. Try using

• geometric series and p-series
• “direct” or “limit” comparison tests
• ratio (or root) test
• Cauchy condensation test (or integral test if you are familiar with that)

3. If
∑∞

n=1 |an| does not converge or you cannot decide, then try

• alternating series test

If this test applies, then
∑∞

n=1 an converges.

Recall that if∑∞
n=1 an converges but

∑∞
n=1 |an| diverges, then we say

∑∞
n=1 an converges conditionally.


