Math 3100 Assignment 9

Taylor Series

Homework due date: 1:00 pm on Friday the 9th of November 2018

1. Find a power series representation for the function

(a)
$$f(x) = \frac{1}{4+x^2}$$
 (b) $g(x) = \frac{1}{(1+x)^2}$ (c) $h(x) = x \log(1+x)$

2. Evaluate these sums

(a)
$$\sum_{n=0}^{\infty} 2^{-n}$$
 (b) $\sum_{n=3}^{\infty} \frac{4^{1-n}}{2n-1}$ (c) $\sum_{n=1}^{\infty} n^2 3^{-n}$

- 3. Find the Taylor Polynomial of order n generated by f centered at x_0 .
 - (a) $f(x) = \log x$, $x_0 = 1$, n = 3(b) $f(x) = \sqrt{x+4}$, $x_0 = 0$, n = 2(c) $f(x) = \frac{xe^{-x}}{x^2+1}$, $x_0 = 0$, n = 6
- 4. Let $f(x) = \frac{1}{1+3x^2}$. Without differentiating, find $f^{(8)}(0)$. Show your work.
- 5. Find the Taylor Series centered at $x_0 = 0$ (the Maclaurin Series) of the following functions.

(a)
$$x^2 \sin x$$

(b) $\sin^2 x$ *Hint:* $\sin^2 x = (1 - \cos 2x)/2$.

- 6. Find the Taylor series generated by f at x_0 .
 - (a) $f(x) = x^4 + x^2 + 1$, $x_0 = -2$ (b) $f(x) = x^{-2}$, $x_0 = 1$
- 7. For what values of x do the following polynomials approximate $\sin x$ to within 0.01

(a)
$$P_1(x) = x$$
 (b) $P_3(x) = x - x^3/6$ (c) $P_5(x) = x - x^3/6 + x^5/120$

- 8. How accurately does $1 + x + x^2/2$ approximate e^x for $-1 \le x \le 1$? Can you find a polynomial that approximates e^x to within 0.01 on this interval?
- 9. (a) How accurately does 1 − x² + x⁴/2 approximate e^{-x²} for −1 ≤ x ≤ 1?
 (b) Can you find a polynomial that approximates e^{-x²} to within 0.01 on this interval?
- 10. Find a polynomial that will approximate

$$F(x) = \int_0^x t^2 e^{-t^2} \, dt$$

for all x in the interval [0, 1] with an error of magnitude less than 10^{-3} .