Math 3100 Assignment 6
 More Infinite Series

Due at 1:00 pm on Friday the 5th of October 2018

1. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of non-negative terms. Use the Monotone Convergence Theorem to prove that $\sum_{n=1}^{\infty} a_{n}$ converges if and only if the sequence of partial sums is bounded.

Be sure to prove both implications
2. Let $a_{n} \geq 0$ for all $n \in \mathbb{N}$.
(a) Show that if $\lim _{n \rightarrow \infty} n a_{n}$ exists and is not equal to 0 , then $\sum_{n=1}^{\infty} a_{n}$ diverges.
(b) Show that if $\lim _{n \rightarrow \infty} n^{2} a_{n}$ exists, then $\sum_{n=1}^{\infty} a_{n}$ converges.
3. Determine which of the following series converge, and which diverge. Give reasons for your answer.
(a) $\sum_{n=1}^{\infty} \frac{1}{3^{n}-1}$
(b) $\sum_{n=1}^{\infty} \frac{\log n}{n^{2}}$
(c) $\sum_{n=3}^{\infty} \frac{1}{\sqrt{n \log n}}$
(d) $\sum_{n=1}^{\infty} \frac{\left(1+n^{2}\right)^{1 / 3}}{n}$
(e) $\sum_{n=1}^{\infty} \frac{\left(1+n^{2}\right)^{1 / 3}}{n^{2}}$
4. Determine which of the following series are absolutely convergent, which are conditionally convergent, and which diverge. Give reasons for your answer.
(a) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n \sqrt{n}}$
(b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n^{2}+1}$
(c) $\sum_{n=1}^{\infty} \frac{(-3)^{n} n}{(n+1)^{5}}$
(d) $\sum_{n=1}^{\infty} \frac{2^{n+1}}{n(-3)^{n}}$
(e) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n!}{(2 n)!}$

