Math 3100 Assignment 5 Infinite Series

Due at 1:00 pm on Monday the 1st of October 2018

- 1. Suppose that $\sum_{k=1}^{\infty} a_k$ converges to A and $\sum_{k=1}^{\infty} b_k$ converges to B.
 - (a) Prove that $\sum_{k=1}^{\infty} (a_k + b_k)$ converges to A + B.
 - (b) Must $\sum_{k=1}^{\infty} (a_k b_k)$ converge to AB? Give either a proof or counterexample.
- 2. Evaluate the following series

(a)
$$\sum_{n=1}^{\infty} \frac{1}{2^n}$$
 (b) $\sum_{n=2}^{\infty} \frac{3}{4^n}$ (c) $\sum_{n=3}^{\infty} \frac{7^{n-1}}{2^{n+1}}$

- 3. Prove that omitting or changing a finite number of terms of a series does not affect its convergence. *Hint: Try using the Cauchy Criterion*
- 4. Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be two sequences of positive real numbers. Prove the following:
 - (i) If lim_{n→∞} a_n/b_n = c > 0, then ∑_{n=1}[∞] a_n and ∑_{n=1}[∞] b_n either both converge or both diverge.
 (ii) If lim_{n→∞} a_n/b_n = 0 and ∑_{n=1}[∞] b_n converges, then ∑_{n=1}[∞] a_n also converges.
 (iii) If lim_{n→∞} a_n/b_n = ∞ and ∑_{n=1}[∞] b_n diverges, then ∑_{n=1}[∞] a_n also diverges.
- 5. Test the series for convergence or divergence.

(a)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 3}$$
 (b) $\sum_{n=0}^{\infty} \cos(n)$ (c) $\sum_{n=1}^{\infty} \frac{2^n}{n^{3n+1}}$ (d) $\sum_{n=1}^{\infty} \frac{n2^n}{3^{n+1}}$ (e) $\sum_{n=3}^{\infty} \frac{(-1)^n}{(\log n)^2}$
(f) $\sum_{n=1}^{\infty} \frac{2n}{8n-5}$ (g) $\sum_{n=3}^{\infty} \frac{2}{n(\log n)^3}$ (h) $\sum_{n=1}^{\infty} \frac{3^n n^2}{n!}$ (i) $\sum_{n=1}^{\infty} \frac{3^n}{5^n + n}$ (j) $\sum_{n=1}^{\infty} \frac{n+5}{5^n}$

6. Investigate the behavior (convergence or divergence) of $\sum_{n=1}^{\infty} a_n$ if

(a)
$$a_n = \sqrt{n+1} - \sqrt{n}$$
 (b) $a_n = \frac{\sqrt{n+1} - \sqrt{n}}{n}$