Math 3100 Assignment 5
Infinite Series

Due at 1:00 pm on Monday the 1st of October 2018
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1. Suppose that > aj converges to A and ) by converges to B.
k=1 k=1

(a) Prove that > (ay + bg) converges to A+ B.
k=1

(o)
(b) Must > (axbi) converge to AB? Give either a proof or counterexample.
k=1

2. Evaluate the following series
VD ® > = © > g
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3. Prove that omitting or changing a finite number of terms of a series does not affect its convergence.

Hint: Try using the Cauchy Criterion

4. Let {a,}22; and {b,}>2; be two sequences of positive real numbers. Prove the following:

(i) If lim In _ o> 0, then > a, and ) b, either both converge or both diverge.
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(i) If lim 9n — 0 and >~ by, converges, then ) a, also converges.
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(iii) If lim — = oo and Y_ b, diverges, then > a, also diverges.
n—=00 Op n=1 n=1

5. Test the series for convergence or divergence.
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6. Investigate the behavior (convergence or divergence) of Z an if
n=1

(8) an = Vi F1— v (b) ap = Y1 EL=Vn



