Math 3100 Assignment 4
 Sequences and Completeness

Due at 1:00 pm on Monday the 17th of September 2018

1. Evaluate following limits or explain why they do not exist. Be sure to justify your answer.
(a) $\lim _{n \rightarrow \infty}\left(\frac{2 n+1}{3-n}\right)^{3}$
(b) $\lim _{n \rightarrow \infty}\left((-1)^{n}+\frac{1}{n}\right)$
(c) $\lim _{n \rightarrow \infty} \frac{\cos (n)}{n^{2}}$
(d) $\lim _{n \rightarrow \infty} \frac{n!+n}{2^{n}+3 n!}$
(e) $\lim _{n \rightarrow \infty} \frac{n+\log (n)}{n+1}$
2. (a) Prove that if $\left\{a_{n}\right\}$ is decreasing, then every subsequence of $\left\{a_{n}\right\}$ is also decreasing.
(b) Let $\left\{x_{n}\right\}$ be a sequence of real numbers.

Prove that $\left\{x_{n}\right\}$ contains a subsequence converging to x if and only if for all $\varepsilon>0$ there exist infinitely many terms from $\left\{x_{n}\right\}$ that satisfy $\mid x_{n} \overline{-x \mid<\varepsilon}$.
3. Let $A, B \subseteq \mathbb{R}$ which are non-empty, bounded above.
(a) Show, directly from the definition of infimum, that if $A \subseteq B$, then $\inf (B) \leq \inf (A)$.
(b) Show that if $\inf (B)<\inf (A)$, then there must exist $b \in B$ that is an lower bound for A.
(c) Prove that there exists a sequence $\left\{a_{n}\right\}$ of points in A such that $\lim _{n \rightarrow \infty} a_{n}=\inf (A)$.
4. Let $x_{1}=0$ and $x_{n+1}=\frac{2 x_{n}+1}{x_{n}+2}$ for all $n \in \mathbb{N}$.
(a) Find x_{2}, x_{3}, and x_{4}.
(b) Prove that $\left\{x_{n}\right\}$ converges and find the value of its limit.

Hint: Try to apply the Monotone Convergence Theorem
5. Let $\left\{x_{n}\right\}$ be a bounded sequence of real numbers.
(a) Prove that the "supremum of the tails of $\left\{x_{n}\right\}$ " defined by $y_{n}:=\sup \left\{x_{n}, x_{n+1}, \ldots\right\}$ is a decreasing sequence that is bounded below and conclude, using the Monotone Convergence Theorem, that $\left\{y_{n}\right\}$ is convergent.
The value of $\lim _{n \rightarrow \infty} y_{n}$ is called the limit superior of $\left\{x_{n}\right\}$ is usually denoted by $\limsup _{n \rightarrow \infty} x_{n}$.
(b) Prove that if $\alpha=\limsup _{n \rightarrow \infty} x_{n}$ and $\beta>\alpha$, then there exists an N such that $x_{n}<\beta$ whenever $n>N$.

