Math 3100 Assignment 10

Uniform Convergence

Homework due date: 5:00 pm on Monday the 3rd of December 2018

1. Consider the sequence of functions

$$f_n(x) = \frac{x+n}{n}$$

- (a) Find the pointwise limit of $\{f_n\}$ on \mathbb{R} .
- (b) Show that $\{f_n\}$ does not converge uniformly on \mathbb{R} .
- (c) Show that $\{f_n\}$ does converge uniformly on [-M, M] for any M > 0.

2. Consider the sequence of functions

$$g_n(x) = \frac{x}{1 + x^n}.$$

- (a) Find the pointwise limit of $\{g_n\}$ on $[0, \infty)$.
- (b) Explain how we know that the convergence cannot be uniform on $[0, \infty)$.
- (c) Write down a smaller set over which the convergence is uniform, no proofs required.

(a) Consider the sequence of functions

$$F_n(x) = \frac{x}{1 + nx^2}.$$

Find the points on \mathbb{R} where each $F_n(x)$ attains it maximum and minimum value. Use this to prove that $\{F_n\}$ converges uniformly on \mathbb{R} .

- (b) Prove that $G_n(x) = x^n(1-x)$ converges uniformly to 0 on [0,1].
- 4. (a) Prove that if $\sum_{n=0}^{\infty} h_n(x)$ converges uniformly on a set A, then the sequence of functions $\{h_n\}$ must converge uniformly to 0 on A.
 - (b) Let

$$h(x) = \sum_{n=0}^{\infty} \frac{1}{1 + n^2 x}.$$

- i. Prove that the series defining h does not converge uniformly on $(0, \infty)$.
- ii. Prove that h is however a continuous function on $(0, \infty)$.
- 5. Let $g_n(x) = \frac{nx^2}{n^3 + x^3}$.
 - (a) Prove that g_n converge uniformly to 0 on [0, M] for any M > 0, but does <u>not</u> converge uniformly to 0 on $[0,\infty)$.
 - (b) i. Prove that $\sum_{n=1}^{\infty} g_n$ converges uniformly on [0,M] for any M>0. ii. Does $\sum_{n=1}^{\infty} g_n$ converge uniformly on $[0,\infty)$? iii. Does $\sum_{n=1}^{\infty} g_n$ define a continuous function on $[0,\infty)$?