Exam 2

Study Guide and Practice Questions

1. For each of the following series state whether it converges absolutely, converges conditionally, or diverges. Justify your answers.
(a) $\sum_{n=1}^{\infty} \frac{\cos n}{2^{n}}$
(b) $\sum_{n=2}^{\infty} \frac{(-1)^{n} n}{\sqrt{n^{2}+1}}$
(c) $\sum_{n=1}^{\infty} \frac{(-2)^{n}(2 n+1)}{n!}$
(d) $\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n^{5}}$
(e) $\sum_{n=1}^{\infty} \frac{(n!)^{2} 4^{n}}{(2 n)!}$
(f) $\sum_{n=1}^{\infty}(-1)^{n} \frac{(\log n)^{2}}{n}$
2. Prove that if a series converges absolutely, then it is convergent.
3. For what values of p do the following series converge? Justify your answer.
(a) $\sum_{n=1}^{\infty} \frac{1}{n(\log n)^{p}}$
(b) $\sum_{n=1}^{\infty} \frac{\log n}{n^{p}}$
4. For which values of x do the following series converge?
(a) $\sum_{n=1}^{\infty} \frac{(2 x)^{n}}{2 n+1}$
(b) $\sum_{n=1}^{\infty} \frac{(x-1)^{n} n}{2^{n}}$
5. (a) Find a closed form for the power series $\sum_{n=2}^{\infty} x^{2 n}$ when $|x|<1$.
(b) Find a sequence $\left\{a_{n}\right\}$ so that $\sum_{n=0}^{\infty} a_{n} x^{n}=\frac{1}{4+x}$ for all $|x|<4$.
6. Provide counterexamples to the following false statements:
(a) If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum_{n=1}^{\infty} a_{n}$ converges.
(b) If $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty}\left|b_{n}\right|$ converges.
(c) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$, then $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges.
7. Prove that if $\left\{a_{n}\right\}$ is summable, then $\lim _{n \rightarrow \infty} a_{n}=0$.
8. State and prove the ratio test.
9. Use the $\varepsilon-\delta$ definition of continuity at a point to prove that

$$
f(x)=\frac{3+x}{1+x^{2}}
$$

is continuous at $x_{0}=1$.
10. Prove that if a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at x_{0}, then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=$ $f\left(x_{0}\right)$ for all sequences $\left\{x_{n}\right\}$ with $\lim _{n \rightarrow \infty} x_{n}=x_{0}$. Use this to show that

$$
g(x)= \begin{cases}\cos \left(x^{-1}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

is not continuous at $x_{0}=0$.

