Practice Exam 3

1. (10 points) Evaluate the following limits, be sure to state any special limits or theorems that you use.
(a) $\lim _{n \rightarrow \infty} \frac{\sin n}{\sqrt{n}}$
(b) $\lim _{n \rightarrow \infty} \sqrt{\frac{n^{2}+\ln n}{4 n^{2}+1}}$
2. (10 points) Determine which of the following series converge or diverge. Justify your answers.
(a) $\sum_{n=0}^{\infty} \frac{n+1}{2^{n}}$
(b) $\sum_{n=0}^{\infty}(-1)^{n} \frac{n^{3}}{2 n^{3}+1}$
3. (15 points)
(a) Find the radius of convergence and interval of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{n}
$$

(b) Find the sum of the series above for those values of x that lie strictly inside the series interval of convergence.
4. (10 points)
(a) Write down the Maclaurin series for $f(x)=\tan ^{-1} x$.
(b) Evaluate

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3^{n}(2 n+1)}
$$

5. (25 points)
(a) Write down the Maclaurin series for $f(x)=\ln (1+x)$ and use this to evaluate

$$
\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}
$$

(b) Use your answer to Part (a) to evaluate

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

(c) Use your answer to Part (a) to determine if the following series are convergent or divergent.
(i) $\sum_{n=1}^{\infty} \ln \left(1+n^{-3}\right)$
(ii) $\sum_{n=1}^{\infty} n^{2} \ln \left(1+n^{-3}\right)$
6. (10 points) Find $f^{(8)}(0)$ when $f(x)=\left(1+3 x^{2}\right)^{-1}$ without differentiating.
7. (10 points) For what values of x does $1-x^{2} / 2$ approximate $\cos x$ to within 0.1 ?
8. (10 points) Find a polynomial which approximates e^{x} to within 0.01 for all $|x| \leq 1 / 2$.

