Exam 3 - Practice Questions

1. Determine whether the sequence converges or diverges. If it converges, find the limit.
(a) $a_{n}=\frac{n \ln n}{n^{2}+1}$
(b) $b_{n}=(1+2 n)^{1 / n}$
(c) $c_{n}=\frac{\cos \sqrt{n}}{\sqrt{n}}$
2. Test the series for convergence or divergence.
(a) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{2}+3}$
(b) $\sum_{n=0}^{\infty} \cos (n)$
(c) $\sum_{n=1}^{\infty} \frac{4^{n}}{3^{2 n-1}}$
(d) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{(\ln n)^{2}}$
(e) $\sum_{n=1}^{\infty} \frac{2 n}{8 n-5}$
(f) $\sum_{n=2}^{\infty} \frac{2}{n(\ln n)^{3}}$
(g) $\sum_{n=1}^{\infty} \frac{3^{n} n^{2}}{n!}$
(h) $\sum_{n=1}^{\infty} \frac{3^{n}}{5^{n}+n}$
3. Test the series for convergence or divergence.
(a) $\sum_{n=1}^{\infty} \sin (1 / n)$
(b) $\sum_{n=1}^{\infty} n \sin (1 / n)$
(c) $\sum_{n=1}^{\infty} \ln \left(1+n^{-2}\right)$
4. Find the radius of convergence and interval of convergence of the power series.
(a) $\sum_{n=0}^{\infty} \frac{x^{n}}{n+3}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n 2^{n}}$
(c) $\sum_{n=0}^{\infty} \frac{3^{n} x^{n}}{(n+1)^{2}}$
(d) $\sum_{n=0}^{\infty} \frac{n}{4^{n}}(2 x-1)^{n}$
(e) $\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-1)^{n}}{\sqrt{n}}$
(f) $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{n^{n}}$
5. Find a power series representation for the function and determine the interval of convergence.
(a) $f(x)=\frac{1}{4+x^{2}}$
(b) $g(x)=\frac{1}{(1+x)^{2}}$
(c) $h(x)=x \ln (1+x)$
6. Find the series' interval of convergence and, within this interval, the actual sum of the series as a function of x.
(a) $\sum_{n=0}^{\infty} \frac{(x+1)^{2 n}}{9^{n}}$
(b) $\sum_{n=0}^{\infty}\left(\frac{x^{2}-1}{2}\right)^{n}$
(c) $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n}}{n!}$
7. Find the Taylor series for the function f at a.
(a) $\sin 2 x, \quad a=0$
(b) $1+x+x^{2}+x^{3}, \quad a=1$
(c) $x e^{-x}, \quad a=0$
8. Find the Taylor polynomial $P_{n}(x)$ for the function f at a.
(a) $\cos x, \quad a=\pi / 6, \quad n=3$
(b) $\tan x, \quad a=0, \quad n=4$
(c) $\sqrt{x}, \quad a=9, \quad n=3$
9. For what values of x do the following polynomials approximate $\sin x$ to within 0.01
(a) $P_{1}(x)=x$
(b) $P_{3}(x)=x-x^{3} / 6$
(c) $P_{5}(x)=x-x^{3} / 6+x^{5} / 120$
10. How accurately does $1+x+x^{2} / 2$ approximate e^{x} for $-1 \leq x \leq 1$? Can you find a polynomial that approximates e^{x} to within 0.01 on this interval?
