Math 2260

Spring 2017

Exam 3 - Practice Questions

1. Determine whether the sequence converges or diverges. If it converges, find the limit.

(a)
$$a_n = \frac{n \ln n}{n^2 + 1}$$
 (b) $b_n = (1 + 2n)^{1/n}$ (c) $c_n = \frac{\cos \sqrt{n}}{\sqrt{n}}$

2. Test the series for convergence or divergence.

(a)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 3}$$
 (b) $\sum_{n=0}^{\infty} \cos(n)$ (c) $\sum_{n=1}^{\infty} \frac{4^n}{3^{2n-1}}$ (d) $\sum_{n=2}^{\infty} \frac{(-1)^n}{(\ln n)^2}$
(e) $\sum_{n=1}^{\infty} \frac{2n}{8n-5}$ (f) $\sum_{n=2}^{\infty} \frac{2}{n(\ln n)^3}$ (g) $\sum_{n=1}^{\infty} \frac{3^n n^2}{n!}$ (h) $\sum_{n=1}^{\infty} \frac{3^n}{5^n + n}$

3. Test the series for convergence or divergence.

(a)
$$\sum_{n=1}^{\infty} \sin(1/n)$$
 (b) $\sum_{n=1}^{\infty} n \sin(1/n)$ (c) $\sum_{n=1}^{\infty} \ln(1+n^{-2})$

4. Find the *radius of convergence* and *interval of convergence* of the power series.

(a)
$$\sum_{n=0}^{\infty} \frac{x^n}{n+3}$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n2^n}$ (c) $\sum_{n=0}^{\infty} \frac{3^n x^n}{(n+1)^2}$
(d) $\sum_{n=0}^{\infty} \frac{n}{4^n} (2x-1)^n$ (e) $\sum_{n=0}^{\infty} (-1)^n \frac{(x-1)^n}{\sqrt{n}}$ (f) $\sum_{n=0}^{\infty} \frac{(x-2)^n}{n^n}$

5. Find a power series representation for the function and determine the interval of convergence.

(a)
$$f(x) = \frac{1}{4+x^2}$$
 (b) $g(x) = \frac{1}{(1+x)^2}$ (c) $h(x) = x \ln(1+x)$

6. Find the series' *interval of convergence* and, within this interval, the actual sum of the series as a function of x.

(a)
$$\sum_{n=0}^{\infty} \frac{(x+1)^{2n}}{9^n}$$
 (b) $\sum_{n=0}^{\infty} \left(\frac{x^2-1}{2}\right)^n$ (c) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n}}{n!}$

- 7. Find the Taylor series for the function f at a.
 - (a) $\sin 2x$, a = 0
 - (b) $1 + x + x^2 + x^3$, a = 1
 - (c) $xe^{-x}, a = 0$
- 8. Find the Taylor polynomial $P_n(x)$ for the function f at a.
 - (a) $\cos x$, $a = \pi/6$, n = 3
 - (b) $\tan x, \ a = 0, \ n = 4$
 - (c) $\sqrt{x}, \ a = 9, \ n = 3$
- 9. For what values of x do the following polynomials approximate $\sin x$ to within 0.01

(a)
$$P_1(x) = x$$
 (b) $P_3(x) = x - x^3/6$ (c) $P_5(x) = x - x^3/6 + x^5/120$

10. How accurately does $1+x+x^2/2$ approximate e^x for $-1 \le x \le 1$? Can you find a polynomial that approximates e^x to within 0.01 on this interval?