
ELEMENTARY DIVISOR DOMAINS AND BÉZOUT DOMAINS
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Abstract. It is well-known that an Elementary Divisor domain R is a Bézout
domain, and it is a classical open question to determine whether the converse state-
ment is false. In this article, we provide new chains of implications between R is
an Elementary Divisor domain and R is Bézout defined by hyperplane conditions
in the general linear group. Motivated by these new chains of implications, we
construct, given any commutative ring R, new Bézout rings associated with R.
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1. Introduction

A commutative ring R in which every finitely generated ideal is principal is called
a Bézout ring. By definition, a noetherian Bézout domain is a principal ideal domain.
Examples of non-noetherian Bézout domains can be found for instance in [4], 243-246.

A commutative ring R is called an Elementary Divisor ring if every matrix A with
coefficients in R admits diagonal reduction, that is, if A ∈ Mm,n(R), then there
exist invertible matrices P ∈ GLm(R) and Q ∈ GLn(R) such that PAQ = D with
D = (dij) diagonal (i.e., dij = 0 if i 6= j) and every dii is a divisor of di+1,i+1. Note
that for a commutative ring R, every diagonal matrix with coefficients in R admits
diagonal reduction if and only if R is a Bézout ring ([16], (3.1)).

Kaplansky showed in [13], 5.2, that a Bézout domain is an Elementary Divisor
domain if and only if it satisfies:

(∗) For all a, b, c ∈ R with (a, b, c) = R, there exist p, q ∈ R such that
(pa, pb+ qc) = R.

(See also [8], 6.3.) It is well-known that a principal ideal domain is an Elementary Di-
visor domain. Consideration of the Elementary Divisor problem for a non-noetherian
ring can be found as early as 1915 in Wedderburn [19].

It is an open question dating back at least to Helmer [12] in 1942 to decide whether
a Bézout domain is always an Elementary Divisor domain. Gillman and Henriksen
gave examples of Bézout rings that are not Elementary Divisor rings in [10]. In 1977,
Leavitt and Mosbo in fact stated in [15], Remark 8, that it has been conjectured that
there exists a Bézout domain that is not an Elementary Divisor domain (see also
Problem 5 in [8], p. 122).

Our contribution to this question is the introduction, in 3.2 and 4.11, of new
chains of implications between R is an Elementary Divisor domain and R is Bézout.
Motivated by these new chains of implications, we construct, given any commutative
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ring R which is not Bézout, new Bézout rings associated with R (see 3.5 and 4.10).
We have not been able to determine whether these rings are Elementary Divisor rings.

2. Orbits under the action of GLn(R)

Let R be a commutative ring. Let Mn(R) denote the ring of (n×n)-matrices with
coefficients in R, and endowed with the action of GLn(R) on the right. Recall that a
commutative ring R is called a Hermite1 ring if for each matrix A ∈ Mm,n(R), there
exists U ∈ GLn(R) such that AU = (bij) is lower triangular (i.e., bij = 0 whenever
i < j). In fact, Kaplansky shows that R is Hermite as soon as for each matrix (a, b),
there exists U ∈ GL2(R) such that (a, b)U = (d, 0) for some d ([13], 3.5).

Let Ln denote the R-submodule of Mn(R) consisting of all lower triangular matri-
ces. We note that a domain R is Hermite if and only if for some n ≥ 2, the orbit of
Ln under the right action of GLn(R) is equal to Mn(R). Indeed, it is clear that if R
is Hermite, the orbit of Ln is the whole space Mn(R). Suppose now that the orbit of
Ln is Mn(R). Let a, b ∈ R and consider the (n × n)-matrix A = (aij) with a11 = a,
a12 = b, aii = 1 if i = 2, . . . , n, and all other coefficients equal to 0. Then there exists
U ∈ GLn(R) such that AU is lower triangular. When R is a domain, it follows that
U has its first two lines of the form (u11, u12, 0, . . . , 0) and (u21, u22, 0, . . . , 0). Let U ′

denote the (2×2) matrix (uij, 1 ≤ i, j ≤ 2). Then U ′ ∈ GL2(R), and (a, b)U ′ = (d, 0).
By Kaplansky’s Theorem, R is Hermite.

Let Sn denote the R-submodule of Mn(R) consisting of all symmetric matrices.
It is natural to wonder whether there exist rings R such that the orbit of Sn under
GLn(R) is equal to Mn(R). This led us to the following definitions.

Definition 2.1 Let n ≥ 1. A ring R satisfies Condition (SU)n (resp. satisfies Con-
dition (SU ′)n) if, given any A ∈ Mn(R), there exist a symmetric matrix S ∈ Mn(R)
and an invertible matrix U ∈ GLn(R) (resp. U ∈ SLn(R)) such that A = SU .

Remark 2.2 It is easy to check that if R satisfies Condition (SU)n or (SU ′)n, and
I is any proper ideal of R, then R/I also satisfies Condition (SU)n or (SU ′)n. It is
also true that if T ⊂ R is a multiplicative subset, then the localization ring T−1(R)
satisfies Condition (SU)n or (SU ′)n. We note that the Hermite property is also
preserved by passage to factor rings or localizations at multiplicative subsets.

Further properties of rings R satisfying Condition (SU)n or (SU ′)n are discussed
in the next section and as we shall see, these rings are quite special. There are other
interesting R-submodules of Mn(R) for which the above question can be considered.
For instance, let Tn ⊂ Mn(R) be the R-submodule consisting of all matrices having
trace zero. We are led to the following definitions.

Definition 2.3 Let n ≥ 1. A ring R satisfies Condition Hn,1 (resp. satisfies Condi-
tion H ′n,1) if the orbit of Tn under the action of GLn(R) (resp. under the action of
SLn(R)) is equal to Mn(R).

1A different notion of Hermite ring is also in use in the literature; See for instance the appendix
to section I.4 in [14]. The notion of Hermite ring used here is due to Kaplansky in 1949, as is
the notion of Elementary Divisor ring [13]. The terminology Bézout ring seems to be slightly more
recent. In 1943, Helmer calls such a ring a Prüfer ring [12], but as early as 1956, the terminology
of Prüfer ring is reserved for rings where all finitely generated ideals are projective [1]. In 1954,
Gillman and Henriksen [10] call a Bézout ring a F -ring. In 1960, Chadeyras [2] uses the term anneau
semi-principal ou de Bézout to refer to a Bézout ring.



ELEMENTARY DIVISOR DOMAINS AND BÉZOUT DOMAINS 3

Further properties of rings R satisfying Condition Hn,1 or H ′n,1 are discussed in
the fourth section. In particular, the analogue of 2.2 also holds. When n = 2, the
conditions (SU)2 and H2,1 are equivalent (4.11).

Our choice of notation indicates that the cases of Sn and Tn are different, as it is
also possible to consider stronger Conditions Hn,s or H ′n,s for 1 ≤ s ≤ n− 1. Indeed,
for s > 0, endow the product (Mn(R))s with the diagonal action of GLn(R) (that is,
for g ∈ GLn(R) and a := (a1, . . . , as) ∈ (Mn(R))s, let a · g := (a1g, . . . , asg)). We
further define:

Definition 2.4 Let n and s be positive integers. A ring R satisfies Condition Hn,s

(resp. satisfies Condition H ′n,s) if the orbit of (Tn)s under the action of GLn(R) (resp.
under the action of SLn(R)) is equal to (Mn(R))s.

As we note in 4.1, no ring satisfies Condition Hn,s or H ′n,s when s ≥ n. Several
obvious generalizations of the notions introduced above also lead to vacuous classes
of rings. For instance, the orbit of Sn × Sn in Mn(R) ×Mn(R) under the diagonal

action of GLn(R) is never equal to Mn(R)×Mn(R). Indeed, let B =

(
0 1
0 0

)
and

C =

(
0 1
0 1

)
. Then the element (B,C) is not in the orbit of S2 × S2.

The orbit of Sn ∩ Tn is never equal to Mn(R). Indeed, the matrix A =

(
1 0
0 0

)
cannot be written as BU with B symmetric and trace 0, and U invertible.

3. Condition (SU)n

Gillman and Henriksen have proved in [9], Theorem 3, that a commutative ring is
a Hermite ring if and only if the following condition is satisfied:

(∗∗) for every a, b ∈ R, there exist c, d and g in R such that a = cg,
b = dg, and (c, d) = R.

It follows immediately that a Bézout domain is a Hermite domain.

Proposition 3.1. Let R be any commutative ring. If R satisfies Condition (SU)n
for some n ≥ 2, then R is a Hermite ring.

Let a, b ∈ R, and let A :=

(
a 0
b 0

)
. Then

(i) If there exists V :=

(
u v
s t

)
∈ GL2(R) such that AV is symmetric, then there

exists g ∈ R such that a = ug, b = vg, and (u, v) = R.
(ii) If R is a Hermite ring, then there exists V ∈ SL2(R) such that AV is symmetric.

Proof. (i) The cases where a = 0 or b = 0 are easy and left to the reader. Assume that
a 6= 0 and b 6= 0. The product AV is symmetric if and only if av = bu. The matrix
V is invertible if and only if ut− sv = ε ∈ R∗. Then aut−asv = aε = u(at− bs), and
at− bs divides a. Similarly, v(at− bs) = b. Therefore, (at− bs) ⊆ (a, b) ⊆ (at− bs),
and we find that the ideal (a, b) is principal. We also have (u, v) = R, as desired.

Suppose now that R satisfies Condition (SU)n for some n ≥ 2. Let a, b ∈ R.
Consider the square (n×n)-matrix A = (aij) with all null entries, except for a11 := a
and a21 := b. Assume that there exists V = (vij) ∈ GLn(R) such that AV is
symmetric. Then we find that v13 = · · · = v1n = 0, and av12 = bv11. Expanding the
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determinant of V using the first row, we find that we can write det(V ) = v11s−v12t ∈
R∗ for some s, t ∈ R. We conclude as above with g = at− bs.

(ii) Let a, b ∈ R. Assume that there exist c, d, g ∈ R such that a = gc and b = gd,
and that there exist s, t ∈ R such that cs+ dt = 1. We can write(

a 0
b 0

)(
c d
−t s

)
=

(
ac ab/g
ab/g bd

)
.

�

Proposition 3.2. Let R be any commutative ring. Consider the following properties:

a) R is an Elementary Divisor ring.
b) R satisfies Condition (SU ′)n for all n ≥ 2.
c) R satisfies Condition (SU)n for all n ≥ 2.
d) R is a Hermite ring.

Then a) =⇒ b) =⇒ c) =⇒ d).

Proof. a) =⇒ b). Let A ∈ Mn(R). Choose P,Q ∈ GLn(R) such that PAQ = D is
a diagonal matrix. Let ε := det(P ) det(Q)−1. Let E denote any invertible diagonal
matrix with determinant ε. Then PAQE = DE is still symmetric since D is diagonal.
We find that

AQE(P−1)t = P−1DE(P−1)t

is symmetric, with det(QE(P−1)t) = 1. It is obvious that b) =⇒ c). The last
implication c) =⇒ d) follows from 3.1. �

It is completely obvious from the previous proposition that if R is an Elementary
Divisor domain and satisfies Condition (SU)n, then it is also satisfies Condition
(SU)n−1. We can strengthen this assertion as follows.

Proposition 3.3. Let R be a commutative domain which satisfies Condition (SU)n
for some n ≥ 3. Then R is a Bézout domain, and satisfies Condition (SU)n−1.

Proof. Proposition 3.1 shows that the domain R is Bézout. Let A ∈Mn−1(R). Since
R is Bézout, it is possible to find two invertible matrices P,Q ∈ GLn−1(R) such that
PAQ consists in its upper left corner of a square (r× r)-matrix A′ with r = rank(A)
and det(A′) 6= 0, and such that all other coefficients of PAQ are zeros. Indeed, since
R is a domain, we can define the rank of A to be its rank when A is viewed as a
matrix with coefficients in the field of fractions K of R. Suppose that the columns
A1, . . . , An−1 of A are linearly dependent over K (i.e., that rank(A) < n− 1). Since
R is a Bézout domain, we can then find a1, . . . , an−1 ∈ A such that

∑
aiAi = 0 and

(a1, . . . , an−1) = A. Then there exists a matrix Y ∈ GLn−1(R) such that the last
column of Y has entries a1, . . . , an−1 (see, e.g., [13], 3.7). It follows that the matrix
AY has its last column equal to the zero-vector. We proceed similarly with the rows
of AY , to find an invertible matrix X ∈ GLn−1(R) such that XAY consists of a
square (n− 2× n− 2)-matrix A(1) in the top left corner, and zeros everywhere else.
If rank(A(1)) < n− 2, we repeat the process with A(1), and so on.

Let B ∈Mn(R) be the matrix with A′ in the upper left corner, and with all other
entries zeros. By hypothesis, there exists U ∈ GLn(R) such that BU is symmetric.
Clearly, the last n − rank(A) rows of BU consists only in zeros. Since the matrix
BU is symmetric, its last n − rank(A) columns also consists only in zeros. Let W
denote any vector in Rrank(A) obtained from one of the n − rank(A) last columns of
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U by removing from the column its last n − rank(A) coefficients. Then A′W = 0.
Since det(A′) 6= 0, we find that W = 0. Let V denote the square rank(A)-matrix in
the upper left corner of U , and let V ′ denote the square (n− rank(A))-matrix in the
lower right corner of U . Then det(U) = det(V ) det(V ′). Hence, V is invertible, and
we have A′V symmetric.

Consider now the square matrix T of size (n−1) consisting of two blocks: V in the
upper left corner, and an identity matrix of the appropriate size in the lower right
corner. The matrix T is invertible. By construction, PAQT is symmetric. Then
AQT (P−1)t is also symmetric, with QT (P−1)t invertible. �

Remark 3.4 A key step in the above proof in general cannot be performed if the ring
R is not a domain, even when R is a principal ideal ring. Indeed, let R := k[ε]/(ε2),
with k any field. The diagonal matrix D := diag(ε, ε) has determinant 0, and has
two linearly dependent columns. But it is not possible to find U ∈ GL2(R) such that
DU has a null bottom row.

If R satisfies Condition (SU)n and R has the property that every unit r ∈ R∗ is
an n-th power in R, then R also satisfies Condition (SU ′)n. Indeed, if A = SU with
S symmetric and det(U) ∈ R∗, write det(U) = εn, and D := diag(ε, . . . , ε). Then
A = (SD)(D−1U) with SD symmetric, and D−1U ∈ SLn(R).

It is natural to ask whether any of the implications in our last propositions can be
reversed in general. We can also ask whether a commutative Bézout domain which
satisfies Condition (SU ′)n also satisfies Condition (SU ′)n−1.

Example 3.5 Proposition 3.2 suggests the following construction of new Bézout
rings. Let R be any commutative ring and fix n > 1. Let X = (xij)1≤i,j≤n de-
note the square n×n-matrix in the indeterminates xij, 1 ≤ i, j ≤ n. For each matrix
A ∈Mn(R), consider the subset I(A) of R[x11, . . . , xnn] consisting of det(X)− 1 and
of the (n2 − n)/2 polynomial equations obtained by imposing the condition that the
matrix AX is symmetric. Let < I(A) > denote the ideal of R[x11, . . . , xnn] generated
by the elements of I(A). We claim that < I(A) >6= R[x11, . . . , xnn]. Indeed, choose a
maximal ideal M of R, and consider the field K := R/M . If 1 ∈< I(A) >, then 1 is
also contained in the ideal of K[x11, . . . , xnn] generated by the images of the elements
of I(A) modulo M . This is not possible since K is a principal ideal domain, and
Proposition 3.2 shows then that K satisfies Condition (SU ′)n.

Consider the set I of all subsets I(A), A ∈ Mn(R), such that there exists no
homomorphism of R-algebras between R[x11, . . . , xnn]/ < I(A) > and R (i.e., such
that there exists no matrix Y ∈ SLn(R) with AY symmetric). For each subset
I = I(A) ∈ I, we let xI denote the set of n2 variables labeled xI11, . . . , x

I
nn, and we

denote by (xI) the matrix (xIij). We now let I(A,xI) be the subset of R[xI ] consisting

of det((xI)) − 1 and of the (n2 − n)/2 polynomial equations obtained by imposing
the condition that the matrix A(xI) is symmetric. It is not difficult to check that
the ideal < I(A,xI), I ∈ I > is a proper ideal of the polynomial ring R[xI , I ∈ I].
Indeed, if 1 ∈ < I(A,xI), I ∈ I >, then there exist finitely matrices A1, . . . , As such
that 1 ∈ < I(Ai,x

I(Ai)), i = 1, . . . , s >= R[xI(Ai), i = 1, . . . , s]. Reducing modulo the
ideal generated by a maximal ideal M of R leads as above to a contradiction. We
define the quotient ring

sn(R) := R[xI , I ∈ I]/ < I(A,xI), I ∈ I > .
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Note that if R satisfies Condition (SU ′)n, then I = ∅ and, in particular, sn(R) =
R. It is clear that we have a natural morphism of R-algebras R → sn(R). By
construction, given any matrix B ∈ Mn(R), there exists U ∈ SLn(sn(R)) such that

BU is symmetric. Indeed, it suffices to take U := (class of(x
I(B)
ij ) in sn(R)).

Let s
(1)
n (R) := sn(R), and for each i ∈ N, we set s

(i)
n (R) := sn(s

(i−1)
n (R)). Finally,

we let

Sn(R) := lim−→
i

s(i)n (R).

Let C ∈ Mn(Sn(R)). Then the finitely many coefficients of C all lie in a single ring

s
(i)
n (R) for some i > 0. By construction, there exist U := (uij) ∈ SLn(s

(i)
n (R)) such

that CU is symmetric. It follows that Sn(R) satisfies Condition (SU ′)n.
Given any prime ideal P of Sn(R), the quotient Sn(R)/P satisfies Condition (SU ′)n

and, thus, is a Bézout domain (3.3). It is natural to wonder whether one could show
for a well-chosen ring R that one such domain is not an Elementary Divisor domain,
for instance by showing that Sn(R)/P does not satisfy Condition (SU ′)n+1.

4. Hyperplane Conditions

Let R be any commutative ring. Let f ∈ R[x11, . . . , xnn] be any polynomial in the
indeterminates xij, 1 ≤ i, j ≤ n. Denote by Zf (R) the set of solutions to the equation

f = 0 in Rn2
. (The notation Zf (R) stands for the zeroes of f in Rn2

.)

Lemma 4.1. Let R be a commutative ring, and let n and s be positive integers. The
following are equivalent:

(a) R satisfies Condition Hn,s.
(b) Given any system of s linear homogeneous polynomials hi ∈ R[x11, . . . , xnn], i =

1, . . . , s, we have

GLn(R) ∩ (
s⋂
i=1

Zhi(R)) 6= ∅.

Moreover, R satisfies Condition H ′n,s if and only if (b) holds with GLn(R) replaced
by SLn(R). No ring R satisfies Condition Hn,s or H ′n,s when s ≥ n.

Proof. Let h(x11, . . . , xnn) =
∑
aijxij be a linear homogeneous polynomial. Let A

denote the associated matrix (aij) ∈ Mn(R). Let X := (Xij) be any matrix. The
equivalence follows immediately from the fact that the trace of the matrix AX t is
equal to h(X11, . . . , Xnn).

Consider now the polynomials hi := x1,i for i = 1, . . . , n. It is clear that for this
choice of n polynomials, GLn(R) ∩ (

⋂n
i=1 Zhi(R)) = ∅. Thus, no ring R can satisfy

Condition Hn,s when s ≥ n. �

Remark 4.2 (See 4.7.) We note that if R satisfies Condition Hn,s, and I is any
proper ideal of R, then R/I also satisfies Condition Hn,s. It is also true that if T ⊂ R
is a multiplicative subset, then the localization ring T−1(R) satisfies Condition Hn,s.

Our motivation for introducing Condition Hn,s is the following lemma.

Lemma 4.3. Let R be a commutative ring satisfying Condition Hn,n−1 for some
n ≥ 2. Then R is a Hermite ring.
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Proof. Let a, b ∈ R. Condition Hn,n−1 implies the existence of V = (vij) ∈ GLn(R)
satisfying the following n − 1 hyperplane conditions: v13 = · · · = v1n = 0, and
av12 = bv11. Expanding the determinant of V using the first row, we find that we
can write det(V ) = v11s − v12t ∈ R∗ for some s, t ∈ R. We conclude as in the proof
of 3.1 (i) that g := (as − bt) det(V )−1 is such that gv11 = a and gv12 = b, with
(v11, v12) = R. �

In analogy with Proposition 3.2, we may wonder whether an Elementary Divisor
ring, or even a Hermite ring, satisfies Condition H ′n,n−1 for all n ≥ 2. Our results on
this question are Proposition 4.4 below, and Proposition 4.8, which shows that an
Elementary Divisor ring satisfies Condition H ′n,1 for all n ≥ 2.

Proposition 4.4. Any field K satisfies Condition Hn,n−1 for all n ≥ 2.

Proof. We thank J. Fresnel for making us aware of [7], Exer. 2.3.16, p. 112, which
details a proof of the proposition under the assumption that K is infinite. The
suggested proof in fact shows that the proposition holds if |K| ≥ r + 1. The key
to 4.4 is the following statement, proved under the assumption that |K| ≥ r + 1
in [6], and in general in [17]: If W is a subspace of the K-vector space Mn(K) and
dim(W ) > rn, then W contains an element of rank bigger than r.

Indeed, let hi ∈ K[x11, . . . , xnn], i = 1, . . . , s, be any system of s linear homogeneous
polynomials. Then the set (

⋂s
i=1 Zhi(K)) is in fact a subspace of Mn(K) of dimension

at least n2− s. If this vector space does not contain any element of GLn(K), then all
its elements have rank at most n− 1, and its dimension would be at most n(n− 1).
This is a contradiction since n(n− 1) < n2 − s when s = n− 1. �

Proposition 4.5. Let n > s > 0 be integers. Let R be any commutative ring. Let
P be a prime ideal of R, with localization RP . Suppose that there exists k > 0 such
that the RP/PRP -vector space (PRP )k/(PRP )k+1 has dimension greater than n− s.
Then R does not satisfy Condition Hn,s.

Assume now that R is noetherian and that it satisfies Condition Hn,s. Then the
Krull dimension of R is at most 1, and every maximal ideal M of R is such that
MRM can be generated by at most n − s elements. Moreover, every maximal ideal
M of R can be generated by at most n− s+ 1 elements.

Proof. Let us assume that R satisfies Condition Hn,s. Then RP also satisfies Condi-
tion Hn,s. By hypothesis, there exist r > n− s and elements a1, . . . , ar of (PRP )k ⊂
RP whose images in (PRP )k/(PRP )k+1 are linearly independent. Consider the fol-
lowing s linear homogeneous polynomials in RP [x11, . . . , xnn]:

a1x11 + a2x12 + · · ·+ an−s+1x1,n−s+1, x1,n−s+2, . . . , x1,n.

Using Condition Hn,s, there exists a matrix U = (uij) ∈ GLn(RP ) such that a1u11 +
a2u12 + · · · + an−s+1u1,n−s+1 = 0, and u1,n−s+2 = · · · = u1,n = 0. Expanding the
determinant of U along the first row, we find that there exist bi ∈ RP , i = 1, . . . , n−
s+1, such that b1u11+b2u12+ · · ·+bn−s+1u1,n−s+1 is a unit in RP . In particular, there
exists at least one u1j with j ≤ n− s + 1 which does not belong to PRP . It follows
that a1u11 + a2u12 + · · · + an−s+1u1,n−s+1 = 0 produces a non-trivial linear relation
between the images of a1, . . . , ar in the RP/PRP -vector space (PRP )k/(PRP )k+1,
and this is a contradiction.

Assume now that R is noetherian. To prove that dim(R) ≤ 1, it suffices to show
that for any maximal ideal M of R, dim(RM) ≤ 1. Since RM is a noetherian local
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ring, the function f(k) := dimRM/MRM
((MRM)k/(MRM)k+1) is given for k large

enough by the values of a polynomial g(k) of degree equal to (dim(RM) − 1). In
particular, if dim(RM) > 1, there always exists a value k such that f(k) > n − s.
This implies by our earlier considerations that Condition Hn,s cannot be satisfied,
and this is a contradiction. Assume now that dim(RM) ≤ 1, and that MRM can
be minimally generated by r elements a1, . . . , ar. Then the images of a1, . . . , ar in
MRM/(MRM)2 are linearly independent. It follows that r ≤ n − s. The statement
regarding the number of generators of M follows from a strengthening of a theorem
of Cohen, as in [11], Theorem 3, and the remark on page 383. �

Let R be any commutative ring. Let Xn := ((xij))1≤i,j≤n denote the square matrix
in the indeterminates xij, 1 ≤ i, j ≤ n. Set

dn := det(Xn) ∈ R[x11, . . . , xnn].

For µ ∈ R, denote by Zdn−µ(R) the set of solutions to the equation dn − µ = 0 in

Rn2
. Clearly, SLn(R) = Zdn−1(R).

Definition 4.6 Let n and s be positive integers. We say that a commutative ring R
satisfies Condition Jn,s if, given any s linear homogeneous polynomials hi(x11, . . . , xnn),
i = 1, . . . , s, and ν1, . . . , νs ∈ R such that ∩si=1Zhi−νi(R) 6= ∅, then for all µ ∈ R, we
have

Zdn−µ(R) ∩ (∩si=1Zhi−νi(R)) 6= ∅.

In other words, stratify Mn(R) using the determinant, so that

Mn(R) = tµ∈RZdn−µ(R).

When R satisfies Condition Jn,s, any linear subvariety ∩si=1Zhi−νi(R) in Rn2
= Mn(R)

which is not empty meets every stratum of the stratification. As with Condition Hn,s,
no ring R satisfies Condition Jn,s with s ≥ n.

Lemma 4.7. Let R be a commutative ring which satisfies Condition Jn,s.

(a) Let I be any proper ideal of R. Then R/I also satisfies Condition Jn,s.
(b) Let T ⊂ R be a multiplicative subset. Then the localization ring T−1(R) also

satisfies Condition Jn,s.

Proof. (a) Let µ ∈ R/I. Let hi ∈ (R/I)[x11, . . . , xnn] and νi ∈ R/I, i = 1, . . . , s,
be such that ∩si=1Zhi−νi(R/I) 6= ∅. Choose a point (r11, . . . , rnn) in this intersection.
Choose a lift (r11, . . . , rnn) ∈ R of (r11, . . . , rnn), and choose a lift hi ∈ R[x11, . . . , xnn]
of hi for each i = 1, . . . , s. Set νi := hi(r11, . . . , rnn). Then (r11, . . . , rnn) belongs to
∩si=1Zhi−νi(R). Choose a lift µ ∈ R of µ. Apply Condition Jn,s on R to find U = (uij)

of determinant µ contained in ∩si=1Zhi−νi(R). Then the class of U is (R/I)n
2

is the
desired element in Zdn−µ(R/I) ∩ (∩si=1Zhi−νi(R/I)).

(b) Without loss of generality, we may assume that we are given hi ∈ R[x11, . . . , xnn]
and νi ∈ R such that ∩si=1Zhi−νi(T

−1(R)) contains a point (r11/t, . . . , rnn/t). Let µ ∈
T−1(R), which we write as µ = µ0/t0, with µ0 ∈ R and t0 ∈ T . Then ∩si=1Zhi−t0tνi(R)
contains (t0r11, . . . , t0rnn). Using Condition Jn,s on R, we find U = (uij) of deter-
minant µ0t

ntn−10 contained in ∩si=1Zhi−t0tνi(R). Then (uij/t0t) has determinant µ0/t0
and is contained in ∩si=1Zhi−νi(T

−1(R)), as desired. �

The key ideas in the proof of the following proposition are due to Robert Varley.



ELEMENTARY DIVISOR DOMAINS AND BÉZOUT DOMAINS 9

Proposition 4.8. Let R be an Elementary Divisor ring. Then R satisfies Condition
Jn,1 for all n > 1.

Proof. Fix h(x11, . . . , xnn) =
∑
aijxij ∈ R[x11, . . . , xnn], and ν, µ ∈ R. Assume that

Zh−ν(R) 6= ∅. Then any generator of the ideal (a11, . . . , ann) divides ν. Write B :=
(aij) ∈ Mn(R), and denote by A the transpose of B. We need to show the existence
of U ∈Mn(R) such that det(U) = µ and such that AU has trace Tr(AU) = ν.

Let P and Q in GLn(R) be such that PAQ = diag(d1, . . . , dn) and di divides di+1

for all i = 1, . . . , n − 1. Then (a11, . . . , ann) = (d1). Multiply both sides of PAQ =
diag(d1, . . . , dn) on the right by D := diag(1, . . . , 1, µ det(P )−1 det(Q)−1). Write ν =
d1s with s ∈ R, and add s times the first column of PAQD to its last column.
Permute the first row with the last row. If n is odd, permute the first and second
column, then the third and forth column, etc, to obtain a matrix with (0, . . . , 0, ν) on
the diagonal. If n is even, permute the second and third column, then the forth and
fifth column, etc, to again obtain a matrix with (0, . . . , 0, ν) on the diagonal. We have
thus proved the existence of P ′ and Q′ in GLn(R) such that P ′PAQDQ′ is a matrix
with (0, . . . , 0, ν) on the diagonal, and det(P ′PDQQ′) = ±µ. Multiplying both
sides by diag(−1, 1, . . . , 1) if necessary, we may assume that det(P ′PDQQ′) = µ.
By construction, Tr((P ′P )(AQDQ′)) = ν, so that Tr(AQDQ′P ′P ) = ν. We can
therefore choose U := QDQ′P ′P to satisfy the conditions of the proposition. �

Remark 4.9 It is natural to wonder whether an Elementary Divisor ring satisfies
Condition Jn,n−1 for all2 n > 1. Here we note that without any assumptions on
the commutative ring R, it is true that a (n × n)-matrix with n − 1 prescribed
entries can always be completed into a matrix in Mn(R) of determinant µ, for any
µ ∈ R. Said more precisely, choose the polynomials h` to be distinct monomials,
say h` := xi`j` for ` = 1, . . . , n − 1, and let ν1, . . . , νn−1 ∈ R. Then for any µ ∈ R,
Zdn−µ(R)∩ (∩n−1i=1 Zhi−νi(R)) 6= ∅. (To prove this fact, it suffices to show that one can
reduce to the case where all prescribed entries are above the main diagonal. In such
a case, we set all but one element on the diagonal to be 1, and the remaining one
to be µ. All other coefficients are set to 0.) When R is a field, it is also possible in
addition to prescribe the characteristic polynomial of the matrix ([18], Theorem 3).

Let us also note the following known related result. Assume that R = Z, and
let r ≥ 1. Pick polynomials h` ∈ Z[xij, i 6= j, 1 ≤ i, j ≤ n], ` = 1, . . . , r, and
integers ν1, . . . , νr. If H := ∩r`=1Zh`−ν`(Z) 6= ∅, then either Zdn−1(Z) ∩ H 6= ∅, or
Zdn+1(Z) ∩H 6= ∅ ([5], Theorem 1).

Assume that R = Z. The set Zdn−µ(Z) ∩ (∩si=1Zhi−νi(Z)) appearing in Condition
Jn,n−1 is nothing but the set of integer points on the affine algebraic variety defined
by the ideal (dn−µ, hi−νi, i = 1, . . . , n−1). When n = 3, this variety can be defined
over Q by a single polynomial of degree 3 in 7 variables. Many results in the literature
pertain to the existence of infinitely many integer points on a hypersurface of degree
3 (see, e.g., [3], Introduction), but none of these results seem to be applicable to
Condition J3,2.

Example 4.10 We now use Lemma 4.3 to construct examples of new Bézout rings
which satisfy Condition H ′n,n−1 for some n > 1. Let R be any commutative ring, and
fix n > 1. For ease of notation, let us note here that the coefficients of a set of n− 1

2T. Shifrin and R. Varley have proved that a field satisfies Condition H ′n,n−1 for all n > 1. J.

Fresnel has shown that an Euclidean domain satisfies Condition Jn,n−1 for all n > 1.
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homogeneous linear polynomials in R[x11, . . . , xnn] determine a n2× (n−1) matrix A
with entries in R. Conversely, such a matrix A determines n− 1 linear homogeneous
polynomials, namely the n − 1 entries of the matrix (x11, . . . , xnn)A. Let X = (xij)
denote the square n× n-matrix in the indeterminates xij, 1 ≤ i, j ≤ n.

For each matrix A ∈ Mn2,n−1(R), consider the subset I(A) of R[x11, . . . , xnn] con-
sisting of det(X)− 1 and of the n− 1 homogeneous linear polynomials obtained from
A. Let < I(A) > denote the ideal of R[x11, . . . , xnn] generated by I(A). We claim
that < I(A) >6= R[x11, . . . , xnn]. Indeed, choose a maximal ideal M of R, and let
K := R/M . Let IM = {det(X)−1, h1, . . . , hn−1} denote the subset of K[x11, . . . , xnn]
consisting of the images modulo M of the elements of I(A). Proposition 4.4 shows
that the intersection GLn(K) ∩ (∩n−1i=1 Zhi(K)) is not empty. Let C be a matrix in
this intersection, and let det(C) = c. It follows that over the field L := K( n

√
c), the

matrix 1
n√cC belongs to SLn(L) ∩ (∩n−1i=1 Zhi(L)). Therefore, the ideal < IM > is a

proper ideal of K[x11, . . . , xnn], and < I(A) >6= R[x11, . . . , xnn].
Consider the set I of all subsets I(A), A ∈ Mn2,n−1(R), such that there exists no

homomorphism of R-algebras between R[x11, . . . , xnn]/ < I(A) > and R. For each
subset I = I(A) ∈ I, let xI denote the set of n2 variables labeled xI11, . . . , x

I
nn, and

let (xI) denote the associated square matrix. Let I(A,xI) be the subset of R[xI ]
consisting of det((xI))−1 and of the n−1 homogeneous linear polynomials obtained
from A. It is not difficult to check that the ideal < I(A,xI), I ∈ I > is a proper ideal
of R[xI , I ∈ I], so we can define the quotient ring

hn(R) := R[xI , I ∈ I]/ < I(A,xI), I ∈ I > .

Note that if R satisfies Condition H ′n,n−1, then I = ∅, and hn(R) = R. It is clear
that we have a natural morphism of R-algebras R → hn(R). By construction, given
any matrix B ∈ Mn2,n−1(R), there exists U ∈ SLn(hn(R)) which also belongs to the
zero-sets with coefficients in hn(R) of the n− 1 homogeneous polynomials defined by

B. Indeed, simply take U := (class of x
I(B)
ij in hn(R))1≤i,j≤n.

Let h
(1)
n (R) := hn(R), and for each i ∈ N, we set h

(i)
n (R) := hn(h

(i−1)
n (R)). Finally,

we let
Hn(R) := lim−→

i

h(i)n (R).

Let C ∈ Mn2,n−1(Hn(R)). Then the finitely many coefficients of C all lie in a single

ring h
(i)
n (R) for some i > 0. By construction, there exist U := (uij) ∈ SLn(h

(i)
n (R))

which also belongs to the zero-sets with coefficients inHn(R) of the n−1 homogeneous
polynomials defined by C. It follows that Hn(R) satisfies Condition H ′n,n−1. Thus, it
satisfies Condition Hn,n−1 and 4.3 implies that R is a Hermite ring.

Given any prime ideal P of Hn(R), the quotient Hn(R)/P is also a H ′n,n−1-domain
and, thus, a Bézout domain (4.3). It is natural to wonder whether one could show for
a well-chosen ring R that one such domain is not an Elementary Divisor domain, for
instance by showing that Hn(R)/P does not satisfy Condition Hn+1,1 and use 4.8.

In the simplest case where n = 2, the relationships between the conditions intro-
duced in this paper can be summarized as follows.

Proposition 4.11. Let R be any commutative ring. Consider the following proper-
ties:

a) R is an Elementary Divisor ring.
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b) R satisfies Condition J2,1.
c’) R satisfies Condition H ′2,1.
d’) R satisfies Condition (SU ′)2.
c) R satisfies Condition H2,1.
d) R satisfies Condition (SU)2.
e) R is a Hermite ring.

Then a) =⇒ b) =⇒ c′)⇐⇒ d′) =⇒ c)⇐⇒ d) =⇒ e).

Proof. The implication a) =⇒ b) is proved in Proposition 4.8. The implications
b) =⇒ c′), c′) =⇒ c), and d′) =⇒ d), are obvious. The implication d) =⇒ e) is
proved in 3.1.

Proof of c′) ⇐⇒ d′) and c) ⇐⇒ d). Let A :=

(
a b
c d

)
∈ M2(R). Consider the

polynomial h := cX−aY +dU−bV . Condition H ′2,1 implies that SL2(R)∩Zh(R) 6= ∅.
Hence, we can find x, y, u, v ∈ R such that xv − yu = 1 and such that

A

(
x y
u v

)
=: S

with S symmetric, since the condition h(x, y, u, v) = cx − ay + du − bv = 0 implies
that ay+ bv = cx+du. This shows that c′) =⇒ d′). The proof of c) =⇒ d) is similar.
The proofs of the converses are also similar and left to the reader. �

Acknowledgment. Thanks to Lenny Chastkofsky, Jean Fresnel, Jerry Hower, Ted
Shifrin, and Robert Varley, for helpful comments and suggestions.

References

[1] H. Cartan and S. Eilenberg, Homological algebra, With an appendix by David A. Buchsbaum.
Reprint of the 1956 original. Princeton Landmarks in Mathematics. Princeton University Press,
Princeton, NJ, 1999.

[2] M. Chadeyras, Sur les anneaux semi-principaux ou de Bézout (French), C. R. Acad. Sci. Paris
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