MATH 4780/6780: Mathematical Biology

Online Assignment 1

The assignment is due Friday $\mathbf{4 / 3} \mathbf{~ b y ~ 9 p m . ~ P l e a s e ~ e - m a i l ~ y o u r ~ s o l u t i o n ~ t o ~ o ~ c a n e r @ u g a . e d u ~}$ with Subject line "online assignment".

1. Consider the following chemical reaction system (Lotka):

$$
\begin{array}{rll}
R+A & \xrightarrow{k_{1}} & 2 A \\
A+B & \xrightarrow{k_{2}} & 2 B \\
B & \xrightarrow{k_{3}} & P
\end{array}
$$

Amount of molecule R is kept constant in the following reaction system, and P is the product. Therefore the only molecules of interest are A and B. In other words, your ODE system should contain only two variables, $[A]$ and $[B]$. The rates are given as $k_{1}[R]=5$, $k_{2}=0.1$ and $k_{3}=5$.
(a) Write down the 2×3 state shift matrix V and propensity vector p.
(b) Derive the ODE that represents this system.
(c) Find all fixed points.
(d) Analyze the stability of the fixed points.

