
Modifying the SEIR Model for 
Schistosomiasis Simulation



Bovine Tuberculosis 

• Based on SEIR 
model



Assumptions

• Disease induced death vs. normal death

• Death rates

• Contraction does not result in immunity

• Recovery rate r is proportional to W

• Birth rates and boundary conditions



Resulting Equations

• Force of infection

• Non-
dimensionalising

• Evaluating the λ’s 
to study spread



Simulation Results



Schistosomiasis

• Schistosomiasis is a parasitic disease caused 
by several species of trematodes

• Some trematodes can survive within human 
body as long as 40 years and harm human’s 
health

• More than 800 thousand people are infected 
per year in China

• Snail-mediated transmission



Assumptions
• 1. The population of people and animals are both kept stable, which indicates that 

the natural birth and death rate are equal;

• 2. Due to low mortality, the disease-induced death rate for both animals and 
people is negligible;

• 3. The infected people ( Ip) and animals (Ia) cannot recover without treatment;

• 4. Infection occurs only from animals to animals and from animals to people, but 
not among people or from people to animal

• 5. The infected animals (Ia) become susceptible (Sa) again after they are cured, 
without any resistance to the disease.

• 6. Infected people (Ip) always take prevention medicine after they are cured which 
give temporary resistance to schistosomiasis, while the susceptibles (Sp) can also 
receive prevention drug from public health service agencies and  became removed 
people (Rp).

• 7. The resistance given by prevention drug will wane and disappear after a period



Transfer Diagram of Model
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Sa: suseptible animals ;     Ia: Infectious animals; 
Sp: suseptible people;   Ip: Infected people;  Rp: removed people



ODEs
For animals: 

dSa(t)/dt = - βaa Sa(t) Ia(t)/Na + μa Ia(t)

dIa(t)/dt = βaa Sa(t) Ia(t) /Na - μa Ia(t)

Sa(t) + Ia(t) = Na

For people:

dSp(t)/dt = - βap Sp(t) Ia(t)/Na + ωp Rp(t) –
ppSp(t)

dIp(t)/dt = βap Sp(t) Ia(t) /Na - μp Ip(t)

dRp(t)/dt = μp Ip(t) + ppSp(t) - ω p Rp(t) 

Sp(t) + Ip(t) + Rp(t) = Np

Parameters

βaa Transmission Coefficient 
among animals

βap Transmission Coefficient 
from animals topeople

μa, μp are the cure rates for 
animals and people

Pp is the prevention rate of 
people

Wp is the resistance waning rate 
of people

Infection Cure

Infection

Resistance waning

cure + Prevention

Prevention



Non-dimensionalization

Let    sa(t) = Sa(t)/Na;  ia(t) = Ia(t)/Na

sp(t) = Sp(t)/Np;  ip(t) = Ip(t)/Np;  rp(t) = Rp(t)/Np

dsa(t)/dt = - βaa sa(t) ia(t) + μa ia(t)

dia(t)/dt = βaa sa(t) ia(t)  - μaia(t)

sa(t) + ia(t) = 1

dsp(t)/dt = - βap sp(t) ia(t) + ωp rp(t) – ppsp(t)

dip(t)/dt = βap sp(t) ia(t) - μp ip(t)

drp(t)/dt = μp ip(t) + ppsp(t) - ω p rp(t)

sp(t) + ip(t) + rp(t) = 1



Further simplification

• Using rp(t)= 1- sp(t) - ip(t) ; ia(t)= 1- sa(t))

• The ODEs can be simplified as  

dsp(t)/dt = - βap sp(t) (1- sa(t)) + ωp ( 1- sp(t) - ip(t) )– ppsp(t)

dip(t)/dt = βap sp(t) (1- sa(t)) - μp ip(t)

dsa(t)/dt = - βaa sa(t)(1- sa(t)) + μa )(1- sa(t)) 



Equilibrium Analysis

0= - βap s*p (1- s*a) + ωp ( 1- s*p– i*p)– pps*p   (1) 

0= βap s*p (1- s*a) - μp i*p                                                     (2)

0= - βaa s*a(1- s*a) + μa (1- s*a)                          (3) 

1. 2. 

Disease-free Equilibrium( DFE) Non Disease Free Equilibrium 
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1. Disease-free Equilibrium Analysis

• Jacobian matrix
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Disease-free Equilibrium Analysis

• Find the eigenvalues

This fixed point will be stable if  
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Ro

βaa Transmission Coefficient among animals
μa is  the cure rate for animals
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Physical meanings  of Ro:

Decide the stability points of susceptible and infective human number and is the  
important factor for disease control. 



2.Non Disease Free Equilibrium 
Analysis 

• Jacobian matrix
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Non Disease Free Equilibrium Analysis 

• Find the eigenvalues
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Ro<=1, disease free equilibrium

Infective equals zero

Ro>1, non disease free equilibrium

Infective is higher with Ro increasing. 



Case 1 (Disease-free Equilibrium)

(Ro<=1)

0.1 day-1

1.06 day-1

1day-1

0.04 day-1

0.02day-1

10day-1

=1/10<1

•After the stability of animals epidemics, human start the dispersion
•Stability point: s*p=0.71, i*p=0
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For human
Initial (0.8,0.2,0)
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Case 2 (Disease-free Equilibrium)

(Ro>=1) 

0.1 day-1

1.06 day-1

10.5 day-1

0.04 day-1

0.02day-1

10day-1

=10.5/10=1.05>1

•After the stability of animals epidemics, human start the dispersion
•Stability point: s*p=0.23, i*p=0.57
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For human
Initial (0.8,0.2,0)
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For human
Initial (0.8,0.2,0)
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Case 3 (Disease-free Equilibrium)

(Ro>=1) 

0.1 day-1

1.06 day-1

500 day-1

0.04 day-1

0.02day-1

10day-1

=500/10=50>1

•After the stability of animals epidemics, human start the dispersion
•Stability point: s*p=0.02, i*p=0.82
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For human
Initial (0.8,0.2,0)
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For human
Initial (0.8,0.2,0)
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Conclusions
1. There are two fixed points.

2. When Ro<=1, the disease-free equilibrium point is stable 
and the disease will disappear after certain time; when 
Ro>1, the Non disease-free equilibrium point is stable 
and the disease will disperse and stabilize in a local 
area. 

3. Suggestion: control the Ro value under 1 to decrease the 
dispersion of schistosomiasis disease by two ways, 
which are to increase the recovery rate of animals and 
reduce the transmission rate of disease among animals 
by hunting or isolating epidemic media, snails. 
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